
XDPeriments:
Tinkering with DNS and XDP

Willem Toorop, Luuk Hendriks

NLnet Labs

NANOG 81 - virtual

Motivation & goals
● Programmable networks are hot (see also: P4), and for good reasons!

● Flexibility in the data plane without sacrificing performance

● Specifically using XDP: easy way to perform some parts in kernel (heavy lifting)

but still have traditional userspace software 'after' that.

XDP does not have to replace everything we do in userspace, it

can augment it.

-> Focus in this presentation: RRL

Response Rate Limiting 101
● When Queries per Second > X (from certain source IP or Prefix)

● Then Return truncated (or drop)

(e)BPF, XDP, DNS
(Extended) Berkeley Packet Filter:

Once the VM that handles your `tcpdump` filters, now a much more powerful

concept with a slightly deceiving name: run verified code in kernel space without

rebooting.

eXpress Data Path:

Network driver hook to run BPF code. Executed before anything happens in the

kernel networking stack.

DNS:

Just DNS.

A packet's destiny: XDP return codes

Classic stack, no XDP

A packet's destiny: XDP return codes

XDP_TX: send it out of ingress NIC

XDP_DROP: drop the packet

A packet's destiny: XDP return codes

XDP_TX: send it out of ingress NIC

XDP_DROP: drop the packet

XDP_PASS: pass on to network stack

A packet's destiny: XDP return codes

XDP_TX: send it out of ingress NIC

XDP_DROP: drop the packet

XDP_PASS: pass on to network stack

XDP_REDIRECTED: send out other NIC

A packet's destiny: XDP return codes

Using the special AF_XDP socket type one can

reach the application while bypassing the entire

network stack. (special case of XDP_REDIRECT)

Towards augmenting DNS software

<- This work is about:

adding functionality that is agnostic of

DNS software running on the OS.

It's not about:

Adapting existing software to use AF_XDP sockets;

Implementing feature complete

nameservers/resolvers in XDP

Workflow
● write C code: rrl.c

● compile: rrl.o (NB: successful compilation does not guarantee the next step!)

● load rrl.o, e.g. using iproute2:

○ verifier checks this code: does it terminate? not too complex?

○ no objections? code is now active on the interface, on ingress, processing incoming packets before

the OS network stack sees them

● any further interaction (if any) with the running code goes via BPF maps

● no modprobe, no reboot, no reconfiguration of userspace software

ip link set dev eno1 xdpgeneric obj rrl.o sec xdp

Response Rate Limiting
● Check whether incoming packet:

○ is Ethernet/IP/UDP with dst port 53, and,

○ contains a correctly formatted DNS query

■ (if not, XDP_PASS the packet upwards to the stack)

● Now we know we are dealing with a DNS query, we:

○ track the query rate for this src_addr (i.e. keeping state, using maps)

○ based on that rate, return:

XDP_PASS (no rate limiting applied), or

XDP_DROP (if we want to RRL this query)

Based on student project by Tom Carpay:

https://www.nlnetlabs.nl/downloads/publications/DNS-augmentation-with-eBPF.pdf

On the state of BPF Maps

/usr/include/linux/bpf.h

Datastructures specific to BPF,

require specific functions to

read/write at runtime, e.g.:

bpf_map_lookup_elem()

bpf_map_update_elem()

bpf_map_delete_elem()

NB: Hardware offloading might not

support all of these map types

Maps: inter-packet state

Keeping state in-between packets

using BPF maps:

● datastructure: hashmap

● key: IPv6/IPv4 src address

(of incoming queries)

● value: our own struct bucket,

enabling rate calculation

Maps: configuration from userspace
Operator request: "RRL, but not for $very_important_prefix"

Run-time configuration from

userspace using maps:

● datastructure: LPM trie

● key: IPv6/IPv4 src address

(of incoming queries)

● value: hit counter

● read/write using bpftool, or,

your own custom userspace

tool.

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Demo time 😬
- example of how to compile

- example of how to load it

- screenshot of rrl.o in action (flamethrower?)

Response Rate Limiting - lessons learned
We can leverage XDP to augment DNS services:

handle the packet in XDP, or,

decide to point it upwards to a userspace nameserver

Maps enable keeping state,

not only for e.g. statistics and rates calculations,

but moreover for configuration from userspace at runtime

When choosing a BPF map type, consider concurrency (PERCPU or not)

and possible performance hits

DNS Cookies 101 - DNS Cookies Operation

● Valid Server Cookie? Large answers

● Valid Server Cookie? RRL disabled

DNS Cookies 101 - DNS Cookies Operation

● Valid Server Cookie? Large answers

● Valid Server Cookie? RRL disabled

D
N

S

Link layer

Internet layer (IPv4 & IPv6)

Transport layer (UDP & TCP)

DNS Cookies

RRL

Answering queries

DNS Cookies -
Pass info with
meta data

● bpf_tail_call()
is like goto

● Outgoing eBPF on Traffic Control (TC) layer

● Edit Socket Buffer instead of packet

● Can grow with:

○ bpf_skb_change_tail()

● Checksum recalculations with:

○ bpf_skb_store_bytes()

● Connect in with out with:

○ BPF_MAP_TYPE_LRU_HASH

● Outgoing less performant, but…

… Augmenting … Interoperable

DNS Cookies
- Also Creating Cookies … ongoing

Concluding ...
A lot is possible!

XDP and eBPF is a very good fit for plain old UDP based DNS.

because per packet processing.

Less suitable for TCP based DNS, and probably impossible for DoT and DoH

We think using XDP to augment an existing DNS service is an exciting new idea,

and a great new tool in the DNS operator’s toolbox

Ongoing work
Currently investigating offloading to actual hardware (Netronome SmartNICs);

This means we can dive into performance measurements, but also performance

comparisons (kernel vs hardware offload);

Looking ahead
● AF_XDP support for NSD

Adapt NSD to use the AF_XDP socket type

provided by BPF/XDP

● Hot self-managing cache

Write outgoing answers in a LRU hashmap,

answer queries directly from XDP

● Zone sharding / load balancing

Load balance based on the qname, so that

nameservers only have to load part of (big)

zones.

● root zone from XDP?

XDPeriments:
Tinkering with DNS and XDP

{willem,luuk}@nlnetlabs.nl

https://github.com/NLnetLabs/XDPeriments

https://blog.nlnetlabs.nl/tag/research/

Many thanks to

Ronald van der Pol

at

https://github.com/NLnetLabs/XDPeriments
https://blog.nlnetlabs.nl/tag/research/

