Sunrise DNS-over-TLS! Sunset DNSSEC?

Benno Overeinder and Willem Toorop
NLnet Labs

ICANN DNS Symposium 2018

Puzzlement over difference between DNSSEC and DNS-over-TLS

- DNSSEC Coordination dnssec-coord@elist.isoc.org: "People thought that using DNS-over-TLS meant they didn't need to use DNSSEC. They have TLS, therefore are all good, right?"
- Twitter:
 "Will jump on DoH first, then see if dnssec is still needed."
- draft-ietf-doh-dns-over-https:
 "In the absence of DNSSEC information, a DoH server can give a client invalid data in response to a DNS query. Section 4 disallows the use of DoH DNS responses that do not originate from configured servers. This prohibition does not guarantee protection against invalid data, but it does reduce the risk."

DNSSEC

History, motivation, solution, properties and limitations

DNSSEC – History & Motivation

UDP is easy to spoof

DNSSEC – The Solution

Sign the zone content

DNSSEC – The Solution (cont'd)

 Validating resolvers can verify origin authenticity with root trust anchor Authoritative Authoritative net ripe 16. Lipe net **Validation** Authoritative Recursive ripe.net resolver **Browser** (application) WebSrv https stub OS https://www.nlnetlabs.nl/

DNSSEC – Properties & Limitations

+ Origin Authentication

DNSSEC – Properties & Limitations (2)

+ Transitivity

- Still first mile issues

DNSSEC – Properties & Limitations (3)

- Does not protect against address hijacking

TLS

Properties and limitations

TLS – Properties & Limitations

DNSSEC not needed anymore

TLS – Properties & Limitations (2)

Except for name redirections

TLS – Properties & Limitations (3)

- Integrity when service provider ≠ content provider

TLS – Properties & Limitations (4)

ME

Protects against address hijacking

+ Authentication

+ Privacy

- 1500+ Certificate Authorities
(in 2010, see https://www.eff.org/observatory)

- Integrity when service provider ≠ content provider

DNS-over-TLS

History and motivation

EnciryPtion

DNS-over-TLS and DNSSEC Authoritative From DNSSEC + Origin authenticity Authoritative net + Integrity **Validation** Authoritative Recursive + DANE ripe.net resolver **Browser** (application) WebSrv https stub OS From DNS-over-TLS

- + Privacy (except from the resolver operator)
- + First mile (by authenticating a trusted server)

- Start with CA store with CAs of the 13 root operators
 - Or the ICANN Root CA/ICANN SSL CA?
- Learn CA of child zone operator when following delegations

Who needs reasons when you've got herdes?

Listen to reason?

- Trust zones to vouch for their own data
- Stub either DNSSEC validates itself, or
- Trusts resolver operator that vouches (via DANE) for itself

Rely on heroes!

- Trust DNS operators chosen to serve the zone
- Trust CAs to authenticate stub → resolver path

