The Importance of Being an Earnest stub

Challenges and solution for the versatile stub

Willem Toorop
13 May 2017
OARC 26 (Madrid)

From the ground-up security Authoritative Authoritative net Recursive Authoritative resolver dns-oarc.net **Browser** (application) WebSrv

• Every "secure" connection is preceded by a DNS lookup

https

The stub does the lookup at the request of the application
 The recursive resolver does all the heavy lifting

stub

OS

From the ground-up security Authoritative net

Recursive

resolver

https

DNSSEC protects against cache poisoning

64.191.0.198

Authoritative

dns-oarc.net

WebSrv

Browser (application)

OS

stub

From the ground-up security

DNSSEC protects against cache poisoning

• But not against resolver hijacking (i.e. ARP or DHCP hijacking or routing tricks)

From the ground-up security

But not against resolver hijacking

One possibility: DNSSEC on the stub

Authoritative

net

security/privacy Authoritative Authoritative net Validation Authoritative Recursive dns-oarc.net resolver **Browser** (application) WebSrv https stub OS DNSSEC protects against cache poisoning

But not against resolver hijacking

Another possibility: DNS over TLS

MILF

- TLS hijacking? IS THAT POSSIBLE?!
- Durumeric, Zakir, et al. "The Security Impact of HTTPS Interception." Network and Distributed Systems Symposium (NDSS'17). 2017.

https://www.internetsociety.org/doc/security-impact-https-interception

security/privacy

- Strengthen TLS security with the stub: DANE (DNS-based Authentication of Named Entities)
- Also signalling system for TLS support (For application without user interaction)

Bootstrap the TLSA lookup with regular DNS?

- Bootstrap the TLSA lookup with regular DNS?
 - Chicken and Egg problem

- Bootstrap the TLSA lookup with regular DNS?
- Have the TLSA record + the complete DNSSEC authentication chain embedded in a TLS extension

https://tools.ietf.org/html/draft-ietf-tls-dnssec-chain-extension

11/45 Labs

security/privacy Authoritative 853._tcp.getdnsapi.net TLSA getdnsapi.net DNSKEY DS net DNSKEY DS Authoritative DNSKEY **RRSIGs** net **Authoritative** Au dns-oarc.net getdnsapi.net **Browser Validation** dns-oarc.net A (application) WebSrv Recursive resolver stub 64.191.0.198 TLS DNSSEC https OS authentication chain Bootstrap the TLSA lookup v extension must be Have the TLSA record + the obligatory, to prevent the authentication chain embedde "Too many CA's" problem

https://tools.ietf.org/html/draft-ietf-tls-dnssec-chain-extension

From the ground-up of t

DNSSEC Availability

DNS Privacy status

The stub is close to the application
 Inform status of DNSSEC and DNS Privacy

Enhanced privacy by round-robining upstreams

From the ground-up security/privacy

Requirements for the versatile stub

Cross the first DNSSEC mile		X			
From the ground up Privacy			X		
Strengthened TLS authentication	(DANE)	X		X	
Strengthened opportunistic TLS	(DANE)	X		X	
Provide status of DNSSEC & DNS over TLS					X

From the ground-up Sylves of the state of the stat security/privacy

Requirements for the versatile stub

Cross the first DNSSEC mile	X		<		
From the ground up Privacy			X		
Strengthened TLS authentication	(DANE)	X		X	
Strengthened opportunistic TLS	(DANE)	X		X	
Provide status of DNSSEC & DNS over TLS					X

 Resolving DNSSEC (to cross the first mile) needs DNSSEC Aware recursive resolver

- Resolving DNSSEC (to cross the first mile) needs DNSSEC Aware recursive resolver
- DNSSEC Roadblock Avoidance https://tools.ietf.org/html/rfc8027
 +Full recursion capability

• DNSSEC Roadblock Avoidance https://tools.ietf.org/html/rfc8027 +Full recursion capability

19/45 Labs

- DNSSEC Roadblock Avoidance https://tools.ietf.org/html/rfc8027
- IPv6 Address Synthesis Prefix Discovery

+DNS64 capability

https://tools.ietf.org/html/rfc7050 https://tools.ietf.org/html/rfc6147

- DNSSEC Roadblock Avoidance https://tools.ietf.org/html/rfc8027
- IPv6 Address Synthesis Prefix Discovery

+DNS64 capability

https://tools.ietf.org/html/rfc7050 https://tools.ietf.org/html/rfc6147

Root KSK Rollover

DNSSEC validating stubs must do RFC5011

Root KSK Rollover

- DNSSEC validating stubs must do RFC5011
- A stub library for DANE has no system config +bootstrap DNSSEC capability: https://tools.ietf.org/html/rfc7958
- A stub library for DANE runs with user's privileges

DNSSEC stubs capability requirements

DNSSEC validation	(various)
DNSSEC Roadblock Avoidance	RFC8027
IPv6 Prefix Discovery	RFC7050
IPv6 Address Synthesis	RFC6147
Automated Trust Anchor Updates	RFC5011
Automated Initial Trust Anchor retrieval	RFC7958

From the ground-up security/privacy

Requirements for the versatile stub

Cross the first DNSSEC mile		X			
From the ground up Privacy			X		
Strengthened TLS authentication	(DANE)	X		X	
Strengthened opportunistic TLS	(DANE)	X		X	
Provide status of DNSSEC & DNS over TLS					X

Requirements for DNS-over-TLS

- TCP fastopen (optional)
- Connection reuse
- EDNS0 keepalive
- EDNS0 padding

https://tools.ietf.org/html/rfc7413

https://tools.ietf.org/html/rfc7766

https://tools.ietf.org/html/rfc7828

https://tools.ietf.org/html/rfc7830

Requirements for **DNS-over-TLS**

- Connection reuse
- Pipe-lining of queries

(Q/R, Q/R, Q/R)

(Q,Q,Q,R,R,R)

Requirements for DNS-over-TLS

- Connection reuse
- Pipe-lining of queries
- Process Out-Of-Order-Responses

(Q/R, Q/R, Q/R)

(Q,Q,Q,R,R,R)

 (Q_1,Q_2, R_2, R_1)

Strict or Opportunistic usage profiles?

https://tools.ietf.org/html/draft-ietf-dprive-dtls-and-tls-profiles-09

- I) Authenticated Private DNS
- 2) Private DNS
- 3) Clear text DNS

Strict or Opportunistic usage profiles?

Requirements for

 Regular PKIX authentication (bootstrap address lookup with regular DNS(SEC))

Requirements for

- Regular PKIX authentication
- Authenticate with DANE (stricter opportunistic with TLSA signalling)

Requirements for

- Regular PKIX authentication
- Authenticate with DANE
- DNSSEC authentication chain TLS extension

Requirements for properties of the properties of

DNS-over-TLS	RFC7858
Reuse / Pipelining / OOOR	RFC7766
TCP Fastopen	RFC7413
ENDS0 keepalive	RFC7828
ENDS0 padding	RFC7830
PKIX support for authentication	(various)
DNSSEC support (for address lookup and authentication)	(various)

From the ground-up Sy Solve Solve Sy Sol security/privacy

Requirements for the versatile stub

Cross the first DNSSEC mile		X		
From the ground up Privacy		X		
Strengthened TLS authentication (L	DANE) X		X	
Strengthened opportunistic TLS (L	DANE) X		X	
Provide status of DNSSEC & DNS over TLS				X

Non address lookups Application Interface

getaddrinfo() and getnameinfo()

(POSIX standard extended by RFC3493 for IPv6)

Non address lookups -

getaddrinfo() and getnameinfo()
(POSIX standard extended by RFC3493 for IPv6)

Talk to upstreams directly with a library:

• *libresolv*, libval, ldns, libunbound, libgetdns

Learn upstreams from OS

• /etc/resolv.conf, NetworkManager, registry...

Non address lookups Application Interface

Applications using getaddrinfo() API will not get the versatile stub features (first DNSSEC mile coverage, DNS privacy)

Talk to upstreams directly with a library:

• *libresolv*, libval, ldns, libunbound, libgetdns

Learn upstreams from OS

• /etc/resolv.conf, NetworkManager, registry...

Non address lookups Application Interface

Stub server listening on 127.0.0.1:53

getaddrinfo() and getnameinfo()
 use system stub which uses stub server

Non address lookups -

getaddrinfo() and getnameinfo()
use systemd-resolved via nsswitch module

• Stub server listening on 127.0.0.53:53

systemd-resolved.service systemd-resolved

Non address lookups -

Talk to stub server via a library:

• *libresolv*, libval, ldns, libunbound, libgetdns

systemd-resolved.service systemd-resolved

127.0.0.53:53

Talk to stub server via a library:

• *libresolv*, libval, ldns, libunbound, libgetdns

systemd-repolited.service system resolved

127 . 53:53

Non address lookups -

Talk to stub server via the dbus API

https://www.freedesktop.org/wiki/Software/systemd/resolved/

The Importance of Being an Earnest stub

