Implementing OpenLISP with LISP+ALT

Attilla de Groot

attilla.degroot@os3.nl
attilla@attilla.nl

April 14, 2009

Abstract

Due to the exponential growth of the BGP routing table in the
“default-free-zone” the Locator ID Separation Protocol (LISP) is being
developed. OpenLISP is one of the implementations of this protocol,
however it does not have the function to route locator and endpoint
id addresses. This document describes how a lisp daemon should in-
teract with OpenLISP, GRE and Quagga to use LISP+ALT as a control
plane.

Implementing OpenLISP with LISP+ALT

Contents

1

2

Introduction

Scalability of Internet Routing
2.1 BGP and the Default-Free-Zone
2.2 Splitting locationand ID

Locator ID Separation Protocol
3.1 Encapsulation
3.2 Mapping information

3.2.1 Life of a Packet in the LISP Protocol

3.3 Mappingsystem.
3.3.1 LISP+ALT
3.3.2 Routing in LISP+ALT .
333 LISP4...........

OpenLISP

4.1 Packet encapsulation
41.1 Incoming packets
412 Outgoing packets
413 MTU Management . . .

42 Mappingtable implementation
421 Command line tools . .
422 AP

Implementing OpenLISP with LISP+ALT

51 Gre
52 Bgp oL
53 Encapsulation
5.4 Mapping Information
54.1 Requirements
5.4.2 Functional Design . . .

Conclusion
6.1 Furtherresearch

Implementing OpenLISP with LISP+ALT

1 Introduction

Over the last ten years the Internet has grown exponentially. Not only the
number of connected hosts has increased, but also the number of routable
prefixes. This has lead to the discussion of creating a more scalable solu-
tion to reduce the routing table size in the “default-free-zone” (DFz). The
growth of the routing table and a possible solution are explained in Section
2.

There have been several protocols suggested in the Routing Research
Group that provide a locator id split; the Locator ID Separation Protocol [1]
(L1SP) is one of them. The locator ID Separation protocol is a mapping and
encapsulation implementation of the locator id split. To realise a locator
id split a table with mappings between locator and end points is needed.
The LISP+ALT system [2] is an overlay network based on already available
protocols that provides a mapping system. In Section 3 the LISP protocol
and the LISP+ALT system is explained.

At the time of writing there are two implementations of the lisp proto-
col. One is a propriatary implementation on the Cisco NX-0S [3] operating
system. The other implementation is OpenLISP [4] developed by the Bel-
gium university of Louvain. The implementation of OpenLISP is explained
in section 4.

There is currently no integration between a LISP+ALT network and the
OpenLISP implementation. Since the system is based on already available
protocols this lead to the following research question:

Is it possible to let the OpenLISP implementation interoperate with a
LISP+ALT network by using existing open source software?

In the next sections the practical deployment of OpenLISP in the LISP+ALT
network is studied. Some current impediments with the OpenLISP imple-
mentation are identified and recommendations for further research are pre-
sented.

Implementing OpenLISP with LISP+ALT

2 Scalability of Internet Routing

The growth of the routing table in the “default-free-zone” (DFZ) has lead to
discussions in the Routing Research Group [5] on a more scalable routing
system. It is commonly agreed upon that splitting the routing and iden-
tification space (IP-adresses) into a locator and endpoint IDs is the way to
provide scalability. In the Internet Research Task Force [5] several drafts
have been submitted with protocols to provide such a locator ID split. The
LISP protocol provides this through a map and encapsulation solution.

2.1 BGP and the Default-Free-Zone

Currently, the BGP [6] protocol is used for inter-domain routing. Every do-
main can be seen in BGP terms as an autonomous system (AS). Every AS
has one or more IP subnets which are announced between BGP speakers
that have a peering relationship. A simplified representation can be seen in
Figure 1.

AS100 AS200
1.1.0.0/16 2.2.0.0/16

Internet
AS300 AS400
3.3.0.0/16 4.4.0.0/16

Figure 1: BGP Routing

Assuming that every AS has one BGP speaker and AS400 has a peering
with AS200 and AS300 the routing table of the AS400 BGP router would
look like table ??.

Over the last 15 years the Internet has grown to over 30.000 autonomous
systems and the use of classless inter-domain routing [7] has lead to a rout-
ing table with almost 300.000 entries as can be seen in figure 2. This is

Implementing OpenLISP with LISP+ALT

Network | Next Hop Path
3.3.00/16 | 3.3.0.1 400 300
22.0.0/16 | 2.20.1 400 200
1.1.0.0/16 | 3.3.0.1 | 400300 100
2.2.0.1 | 400 200 100

Table 1: BGP FIB for AS400

300000

280000

200000 -

150000

Active BGP entries (FIB)

100000 -

Jatelelo T

i i i H H H H H H H i i H H H H H
a9 L LS 92 93 94 95 a6 a7 95 99 i1} 01 02 03 4 05 06 o7 08 09
Date

Figure 2: Growth of the BGP Table - 1994 to Present [5]

caused by more provider independent address space that has been given
out over the last few years and less provider aggregation. Another factor
of table growth is multihoming, where two providers announce the same
subnet.

BGP was not ment to be used for traffic engineering. However routing
updates are abused to control traffic flows in the network. This causes a
more dynamic routing table and more entries if subnets are separately an-
nounced and thus more growth of the Forwarding Information Base (FIB).

The FIB is finally loaded into high speed memory, because for every IP
packet a lookup has to be done. This kind of memory is costly in design
and manufacturing. Having a large FIB increases the operational cost of
having a router in de DFZ.

2.2 Splitting location and ID

In current (inter)network routing an IP-address is used as the location and
identifier. Discussions in the RRG have lead to the conlusion that split-

Implementing OpenLISP with LISP+ALT

ting location and identifier is a commonly accepted solution to limit the
growth of the routing table. If such a system is used in Internet routing
this will lead to a situation where every AS has one or a few locators that
represent multiple subnets. The routing table will then only contain locator
addresses. The ids for the endpoints will be stored in a seperate mapping
table.

As result of a locator ID split we will have a more stable DFZ, because no
routing updates are needed if an endpoint prefix is moved, fragmentation
of the identity space is not an issue because of the RLOC to end ID mapping,
and in a multihoming situation only one mapping for the endpoint prefix
is needed.

To implement a location/ID split addressing, headers, and protocols
need to be adjusted. Several proposals have been made for this implemen-
tation [9, 10]. The Locator ID separation protocol is a map and encapsula-
tion implementation of the location/ID split approach.

Implementing OpenLISP with LISP+ALT

3 Locator ID Separation Protocol

The Locator ID Separation Protocol (LISP) is an implementation of the en-
capsulation solution for the locator id split. The development of the LISP
protocol continued at the IETF after the Internet Architecture Board [11]
routing and adressing workshop in 2006 [12]. At the time of writing an
IETF workgroup is being setup for further development of the protocol.

Although the size of the routing table is one of the main problems LISP
should solve, it also adresses traffic engineering. By using priority and
weight from the authoritative side you can control your ingress traffic and
load balance your traffic over multiple LISP devices.

The LISP protocol can be devided into two sections: packet encapsula-
tion and mapping. The data plane takes care of the encapsulation proces
and problems that may occur in this process. As is explained in Section 2.2
a seperate mapping table is needed. The protocol provides for mechanisms
to fill and update the mapping table.

3.1 Encapsulation

To reduce the routing table an original IP packet is encapsulated with two
new headers as seen in Figure 3. The LISP header includes the locator reach-
ability information and a nonce. This header is then encapsulated with
another ip header that is used to route the packet. This is send to the well-
known LISP UDP port 4341. Since the encapsulation process uses standard
IP headers, nothing in the protocol excludes the use of IPV6 either as locator
IDs or as endpoint IDs.

To prepend a LISP header and outer ip header two new devices are in-
troduced into the network.

¢ An Ingress Tunnel Router (ITR) that adds a LISP header, encapsulates
it with another 1P-header and sends it to the destination router.

* An Egress Tunnel Router (ETR) that removes the extra headers and
sends the packet to the final destination.

Both functions can be combined in one device and is named an XTR.

As with every encapsulation protocol the MTU might be a problem.
Since lisp adds additional headers the packet becomes larger and could
exceed the maximum MTU in the path. According to the draft most traffic
paths can accommodate a path MTU of at least 4470 bytes. It has to be de-
termined in a deployment pilot if and what problems are caused by adding
the extra headers. At this moment there is no plan to add a mechanism for
fragmenting packets at an ITR.

Implementing OpenLISP with LISP+ALT

0 1 2 3
0123456789 0123456789012345678901
ottt -ttt —F—F—t—F—F—F—t—F—F -t —F—F—t—F—F -+ —F—F—+—+—+—+
/ |Version| IHL |Type of Service]| Total Length
I e e e et e LAt st S L e e Bt et
| | Identification |Flags| Fragment Offset
[At st B T e Rt S B e e St
OH | Time to Live | Protocol = 17 | Header Checksum
| ottt —t—F—F—F—F—F -t —F—F—F—F—F -t —F—F—F—F—F—+—+—F+—+
| I Source Routing Locator
N\ ottt -ttt —F—F—F—F—F -+t —F+—+—+
\ Destination Routing Locator
tot—t—F—t—t—F—F—t—t—F—t—F—F—F—t—F—F—F—F—F—F—t—F—F—F—F—F—F—+—+—F+—+
/| Source Port = xxXxx | Dest Port = 4341
UDP +—+—+—F—+—+—+—F—+—+—F—+—+—F—F—t—+—F—+—+—F—F—t—F—F—+—+—F—F—+—+—+—+
\ | UDP Length | UDP Checksum
Fot—t—F—t—t—F—F—t—F—F—t—F—F—F—t—F—F—F—F—F—F—t—F—F—F—F—F—F—+—+—+—+
/ 15| Locator Reach Bits
ottt -ttt —F—t—F—F—F—t—F—F -t —F—F—t—F—F -+ —F—F—+—+—+—+
\ Nonce \
At s B e Rt At st B L e e st S e
/ |Version| IHL |Type of Service| Total Length
A e s B e et s S s sk et B e e
| | Identification |Flags | Fragment Offset
| tot—t -t —F—F—F—F—F -t —F—F—F—F—F—F—F—F—F—F—F—F—+—+—F+—+
IH | Time to Live | Protocol | Header Checksum
| tot—t—F—t -t —F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—+—+—F+—+
\ \ Source EID |
N\ ettt —F—F—F—t—F—F—F—F—F—F—F—F—F—F—F—F—F—+—F+—F+—+—+
\ Destination EID
tot—t—F—t—t—F—F—t—F—F—t—F—F—F—t—F—F—F—F—F—F—t—F—F—F—F—F—F—+—+—F+—+

U H B
~

Figure 3: LISP headers

3.2 Mapping information

Before packets can be encapsulated a mapping table has to be filled with
locator 1D to end point mappings. The protocol draft proposes two new
messages to fill a mapping database: map-request and map-reply.

When an ITR receives a packet with a destination IP for which it has no
mapping, it sends out a map-request to the authoratative ETR. The map-
request also includes the EID prefix information of the source ITR, because
it is likely that information has to be send back to the orginating AS. When
an ETR is also functioning as an ITR it can choose to cache the information
so it does not have to send a seperate map-request.

The map-request messages has several additional fields that are used to
fill the mapping table.

¢ Nonce
The Nonce is used for route returnability. An ITR wil only accept a
map-reply from an ETR that replies with the same Nonce. This nonce
is not used as a security technique.

Implementing OpenLISP with LISP+ALT

e Locator Reach Bits

With the locator reach bits can be determined whether an ETR is reach-
able.

* Record Count
A map-request can hold multiple records. The record count gives the
number of records in the map-request.

ottt —F—F—t—F—F—t—F—F—F—t—F—F—F—F—F—F—t—F—F—F—F—F—F—+—+—+—+
[S| Locator Reach Bits

ottt —F—F—t—F—F—t—F—F—F—t—F—F -+ —F—F—F—F—F -+ —F—F—+—+—+—+
\ Nonce \
fot—t—t—t—t—t—t—t—t—t—t—F—t—t—t =ttt —F—F—F—F—F—F—F—F—t—t—t—+—+—+
| Type=1 |A|R] Reserved | Record Count

R e L L R mat B B B e it s e S B
| Source-EID-AFI | ITR-AFI |
fot—t -ttt —F—F -t —F—F—F—F—F -t —F—F—F—F—F—+—+—F+—+
| Source EID Address ...
tot—t—F—t—t—F—F—t—t—F—F—F—F—F—t—F—F—F—F—F—F—t—F—F—F—F—F—F—+—+—F+—+
| Originating ITR RLOC Address ...

tot—t—t—t -ttt —Ft—F—t—F—F—F—t—F—F—F—F—F—F—t—F—F—F—F—F—F—+—+—F+—+

/| Reserved | EID mask—-len | EID-prefix—-AFI
ReC +—t—F—t—F—+—+
\ EID-prefix ...

t—t—t—t—F—Ft—Ft—F—t—t—F—F—F—F—F—F—F—F—F—F—F -t —F—F—F—F—F—F—+—+—+
| Map-Reply Record ...
F—t—t—t—F—F—F—F—F—t—F—F—F—F—F—F—F—F -ttt —F—F—F—F—F—+—+—+—+
\ Mapping Protocol Data

e e e R Rt et B e e S T e e e B e e R e e e e e

Figure 4: Map Request

If an ETR receives a map-request, it responds with a map-reply message
that includes the mapping for the end ID prefix. The map-request also has
some additional fields for managing the mapping table.

e TTL
The TTL value is used to determine how long the record should be
stored.

¢ Priority

¢ Weight
With the priority and weight field ingress traffic can be controlled.
Priority detemines the priority, weight loadbalances the traffic over
multiple ETRs.

With the scheme of map-requests and map-replies there is a problem
with the first packet that is send. If there is no mapping available the packet
will be dropped by the system. To prevent dropping of packets a data probe

Implementing OpenLISP with LISP+ALT

tot—t—F—t—F—F—F—t—Ft—F—F—F—F—F—F—F—F—F—F—F—F—t—F—F—F—F—F—F—+—+—F+—+
| x| Locator Reach Bits
tot—t—t—t—t—F—F—t—F—F—t—F—F—F—t—F—F—F—F—F—F—t—F—F—F—F—F—F—+—+—F+—+
| Nonce |
Fot—t—F—t—t—F—F—t—F—F—t—F—F—F—t—F—F—F—F—F—F—t—F—F—F—F—F—F—+—+—+—+
| Type=2 | Reserved | Record Count |
> -ttt -ttt —F—F—t—F—F—F—t—F—F—t—F—F—F—F—F—F—F—F+—F—F—+—+—+—+
| Record TTL
fot—t—t—t—t—t—t—t—t—t—t—F—t—t—t =ttt —F—t—F—F—F—F—F—F—t—t—t—+—+—+
Locator Count | EID mask-len |A] Reserved
e e L R aat B B e e L e e R B
| Reserved | EID-AFI
fot—t—F—F—t—F—F—t—Ft—F—F—F—F—F—t—F—F—F—F—F—F -t —F—F—+—F—F—+—+—F
| EID-prefix |
tot—t—F—t—t—F—F—t—t—F—F—F—F—F—t—F—F—F—F—F—F—t—F—F—F - —F—F—+—+—F+—+
/| Priority | Weight | M Priority | M Weight
tot—t—t—t—t—F—F—t—Ft—F—t—F—F—F—t—F—F—F—F—F—F—t—F—F—F—F—F—F—+—+—F+—+
| Unused Flags IR Loc—-AFI
tot—t—t—t—t—F—F—t—F—F—t—F—F—F—t—F—F—F—F—F—F—t—F—F—F—F—F—F—+—+—+—+
\ Locator
Fot—t—F—t—t—F—F—t—F—F—t—F—F—F—t—F—F—t—F—F—F—t—F—F—F—F—F—F—+—+—+—+
| Mapping Protocol Data
Fot—t—t—t—t—t—t—t—t—t—t—F—t—t—F—F—F—F—F—F—F—F—F—F—F—F—t—t—t—+—+—+

+—————0ar8O0oOQO0DwW—— +
oot
i

|
\%

Figure 5: Map Reply

can be created. A data probe has the same structure as a standard encap-
sulated packet, see Figure 3, however the destination address of the inner
headers is copied to the outer headers. When a packet is received by an ETR
and it detects the same destination address in the inner and outer header
it knows that it is a data probe and will reply with a map-reply packet and
still deliver the orginal packet to the endpoint. There is an ongoing discus-
sion in the RRG if a data probe is needed for the protocol.

3.2.1 Life of a Packet in the LISP Protocol

In the previous section the details of the LISP protocol are explained. But
how is a packet actually send over the network? For example we have a
network setup like Figure 6 where host 1.1.1.1 and host 2.2.2.2 are commu-
nicating using the lisp protocol.

1. Host 1.1.1.1 wil send a TCP packet to host 2.2.2.2 over its local net-
work. Since it is a destination outside its own subnet it will send it
to its default router. This maybe the ITR itself or a internal gateway
protocol router, eventually the packet will get routed outside its own
AS and thus needs to cross the ITR.

2. The ITR will prepend a LISP header and adds a second IP header. If
there is a known mapping for the end 1D the ITR will use the locator as
destination id. If the mapping is unknown, it will create a dataprobe
by using the original destination address as destination in the second

10

Implementing OpenLISP with LISP+ALT

AS100 xTR xTR AS200
1.1.0.0/16 | 2.2.0.0/16
E Eg Internet 1 —f
= Loc ID: Loc ID: E
— 240.0.254.10 240.0:254.20 ——
1.1.1.1 2.2.2.2

Figure 6: LISP Network

header. The ITR will use data probes untill the EID prefix is available
in the mapping database.

3. If the packet is a data probe, the ITR will route the packet over the
control plane (if lisp+alt 3.3.1 is used). If it is a normal packet it will
route the packet over the data plane.

4. In either case the ETR will receive the packet and strips the extra head-
ers. If the packet is a data probe, it will send a map-reply message to
the ITR. The ETR will then forward the original packet to the endpoint.

5. The I1TR will receive a map-reply if the packet was a data probe and
will install the mapping in the database.

6. For subsquent packets to the same EID prefix the locator address wil
be used in the second IP header and the packet will be routed directly
to the locator.

This scheme assumes the use of a data probe. If data probes are not used
LISP will send a map-request when a mapping is not available and will drop
packets untill the map-reply information is installed in the database.

3.3 Mapping system

As explained in Section 2 one of the goals of the locator id split is reducing
the size of the routing table. To send encapsulated packets to an authorita-
tive ETR there is a mapping table needed. There have been several solutions
suggested [2, 13, 14, 15, 16, 17] for a system that provides these mappings.

3.3.1 LISP+ALT

The LISP+ALT network is a gre overlay network with bgp to route the end-
point prefixes. An end-point network is connected to the core ALT network
by GRE tunnels. This leads to a topology as seen in Figure 7. Instead having
the full table itself, an ITR will forward either a data probe or map-request to

11

Implementing OpenLISP with LISP+ALT

the end-point of the gre tunnel and the packet will be routed to the author-
itative ETR. The map-reply messages are not send over the ALT network,
because the ETR knows the source address of the ITR that can be routed
normally over the internet.

As100 Internet As200
1.1.0.0/16 2.2.0.0/16
Gre tunne Gre tunnel

Alt network

Figure 7: ALT network

3.3.2 Routing in LISP+ALT

The ALT network is composed of core routers with multiple end-points
which are interconnected using GRE tunnels.This gives the possibility to
build a more hierarical bgp structure and aggregate more routes. An ITR
announces its own EID prefix into the ALT network. This means that only
the core of the alt network holds the full, more aggregated, BGP table. The
ITR contains the mapping for active sessions and can be run on less dimen-
sioned hardware, which will reduce the operational cost.

As said, an XTR has a connection to the “normal” internet, where only
packets with locator addresses are routed and a gre connection to the ALT
network. This setup means that an XTR needs to run two bgp instances
(one for the “normal” internet and one for the ALT network). The loca-
tor address space will be provided from seperated IP space and since only
these addresses are advertised the routing table will be much smaller. In
the ALT network it will be sufficient that a default route is advertised to an
XTR.

In Section 3.3.1 is explained that only an ITR sends packets onto the ALT
network. A logical configuration for an ITR would be to have a default
route to the ALT network and more specific routes to the “normal” internet.
This will will automatically lead to the situation that data probes are send
onto the ALT network and be delivered at the authoritative ETR. In the

12

Implementing OpenLISP with LISP+ALT

lisp draft however is stated [1, This is performed by using the RLOC as
the destination address for Map-Request message], this is only desired if a
map-request is not send upon a cache miss. If there is a cache miss, the XTR
does not know the rloc address for the EID prefix. Only in case of the first
map-request the destination address of the original packet should be used.
Only in this case the map-request will be routed to the authoritative ETR.
This statement in the draft will be adjusted in the next version.

3.3.3 LISP4

At this moment Cisco has build a LISP+ALT network (lisp4) for testing pur-
poses, the layout of this network can be seen in Figure 8. Cisco workes
closely with Regional Internet Registries (RIR) to position the lisp core routers,
since they are the most logical choice of aggregating the numbering space.
However a RIR such as Ripe does not have any operational responsibilities
on the internet now. Further research is needed to determine if this is an
acceptable position for a RIR.

In the layout NLnet Labs is already an endpoint for the ALT network,
connected to the RIPE core.

LISP-ALT Peering Topology
Wed Jan 14 16:04:18 PST 2008

damien luigi gerd | nl-labs simlo, level-3 dino

N

apnic mm| grin

marshall

dmm-alt |e— vaf3 |

Hi

iij savyis
T —_—]
L
ian z shep darrel isg | Red: tail peering
Blue: multihome pair

Black: backbone peering

il wau Dashed; future
vaf vaf2 il demm | Dashed: iB&P

Figure 8: LISP4 network

13

Implementing OpenLISP with LISP+ALT

4 OpenLISP

The LISP development is mainly driven by developers from Cisco. Despite
the fact that most of the software from Cisco is proprietary closed source,
their approach to the LISP protocol development is open. All the documen-
tation concerning the standard is published in the IETF, except the NX-OS
implementation details. OpenLISP is an open source implementation for
FreeBSD based on the LISP draft (version 07) and is currently the only im-
plementation next to the NX-OS implementation of Cisco.

As the LISP protocol itself, the OpenLISP implementation can be dev-
ided in two parts and are described in two section respectively. The first
section discusses the encapsulation implementation, the second the imple-
mentation of the mapping table.

4.1 Packet encapsulation

The packet encapsulation of LISP is implemented as a patch on the IP pro-
tocol stack of the FreeBSD kernel. The design of the protocol is intended to
be simple.

Although the design provides the possibility for IPV6 implementation
as orginal packets or usage in the outer header, the current implementation
of OpenLISP doesn’t include support for IPv6

411 Incoming packets

For incoming packets the adapted ip stack implements a kind of loop where
the outer header and LISP header are removed, as seen in Figure 10

If a LISP packet is received by the ip_input module and recognized as
a LISP packets by the well-known udp port 4341, it is forwarded to the
lisp_input module. Non-lisp packets are inserted into the transport layer as
they normally would. The lisp_input module uses the information in the
LISP header and reinserts the original packet into the ip_input module. This
allows the module to handle the packet as it normally would, by routing it
to an end-point or forwarding the packet for local delivery.

4.1.2 Outgoing packets

The implementation of the IP stack for outgoing packets follows a similar
approuch as for the incoming packets.

First a normal IP packet is created. This packet can be from the local
system itself or from the ip_forward module if kernel routing is enabled.
If there is a LISP mapping available for the destination address the LISP
header is added and inserted again into the ip_output module where the
locator ID is used as the destination address in the IP header. In the case

14

Implementing OpenLISP with LISP+ALT

| |
| | lisp6_input ()
| |
I |

/ \
/ \

/ \
- + F——————— +
| | | |
| ip_input () | | ip6_input () |
| | | |
| | | |

- > | [<———m—m— +
| /
\ /
\ /
\ /
\ /

(Data Link Layer)

Figure 9: Protocol Stack Modifications for incoming packets

that there is no mapping for the destination, a cache miss is send over the
API in order to generate a map-request packet and contact the authoritative
ETR for the prefix mapping. Because there is no mapping the packet will be
routed normally, however in a LISP implementation this will mean that the
packet is dropped. OpenLISP does not have an implementation of the data
probe mechanism as specified in the draft.

4.1.3 MTU Management

As is described in Section 3.1 the MTU may cause problems when encapsu-
lating packets. OpenLISP doesn’t implement a packet fragmentation sys-
tem. It uses the MTU setting of the interface of the RLOC and adds it to
the mapping database entry of the RLOC. When a packet is received to en-
capsulated, the final MTU size is calculated. When it exceeds the MTU of
the interface an icmp “too big” message is send and the packet is dropped.
Because of this implementation, a packet will never exceed the maximum
interface MTU value. Problems will be not different then with normal pack-
ets.

15

Implementing OpenLISP with LISP+ALT

/ \
e et + o +
ip_output ()		ip6_output ()

| | | |
+-———— + \ \ +-————— +
\ /
\ /
v \Y4

(Data Link Layer)

Figure 10: Protocol Stack Modifications for outgoing packets

4.2 Mappingtable implementation

OpenLISP defines two seperate mapping tables. One table is a cache ta-
ble for short lived mappings, the other is defined for locally available EID
prefixes. The mappings in the tables contain the necesary metrics, such as
weight, priority and the MTU value as explained in Section 4.1.3.

The OpenLISP implementation provides an api to read and write to the
tables. Also two commandline tools are available to manually manage the
tables.

4.2.1 Command line tools

The map tool provides a way to add, remove, and view mappings in the
database manually, as can be seen in the following examples. The man (1)
map explains usage details.

In the first example a local mapping is added. If LISP encapsulated
packets are received at the locator address (145.100.104.13), the headers will
be removed and the packet will be forwarded to its orginal destination. To
configure a local mapping one of the interfaces should have an 1P-address

16

Implementing OpenLISP with LISP+ALT

configured from the EID block.

Map view
[airwolf@os3-1lisp "]$map get —-inet 145.100.104.192
Mapping for EID: 145.100.104.192

EID: 145.100.104.192

EID mask: 255.255.255.224

RLOC Addr : inet 145.100.104.13 P 255 W 100 Flags i MTU 1500
flags: <UP,LOCAL,STATIC,DONE>

Map write
[airwolf@os3-1lisp ~]1$ sudo map add -local -inet 145.100.104.193/27
—inet 145.100.104.13

add DB 145.100.104.194

With the mapstat tool (based on the netstat utility) LISP statistics can be
viewed. These stats are from one of the OpenLISP test machines that send
encapsulated ICMP packets.

Mapstat

[airwolfQRos3-1lisp ~]\$ mapstat -sf inet -p lisp
lisp:

6945 datagrams received

0 with incomplete header

0 with bad encap header

0 with bad data length field
6945 delivered

4856 datagrams output

0 dropped on output

4856 sent

4.2.2 API

The OpenLISP implementation is developed in line with the unix philoso-
phy to let a daemon in user space control the mapping table. To provide
access to the mapping table for a daemon, mapping sockets are created.
The mapping sockets are based on the well known routing sockets.

If a process has opened a mapping socket it can read en write through
three operations:

* MAPM_ADD
Used to add mappings to the table, and read result from the kernel.

e MAPM_DELETE
Used to delete mappings from the table, same as add.

* MAPM_GET
Is used to retrieve information from the mapping table. A specific EID
should be given in the query.

Next to the operations the daemon can perform on the mapping table,
the kernel also sends messages. As explained in Section 4.1.2 before the

17

Implementing OpenLISP with LISP+ALT

encapulation is done the mapping from the database is retrieved. However
when there is no mapping available, a map-request has to be send by a dae-
mon. The OpenLISP kernel patch can trigger three different messages. If
there is no mapping available a MAPM_MISS is send. This message should
be a trigger for a daemon to send a map-request message to the locator.

The current implementation of OpenLISP is based on the 07 draft of
LISP. Although it is in the unix spirit to let a user space daemon control
the mapping information, there is currently no daemon available that can
accomplish this.

18

Implementing OpenLISP with LISP+ALT

5 Implementing OpenLISP with LISP+ALT

In the previous sections we explained the LISP protocol, the LISP+ALT net-
work and the OpenLISP implementation. At this moment there has been
no interoperability between the OpenLISP implementation and a LISP+ALT
network.

To let OpenLISP interoperate with LISP+ALT we can devide the implen-
tation in four parts.

e Gre
As is explained in Section 3.3.1, the ALT network is an overlay net-
work based on the GRE protocol. This means that a LISP XTR should be
able to create a GRE tunnel to one or more ALT network core routers.

* Bgp
Over the GRE overlay network BGP is used to aggregate the endpoint
prefixes. A XTR has to announce its assigned eid prefix into the ALT
core over BGP. The XTR should therefore have the bgp protocol avail-
able.

¢ Encapsulation
The primary function of an XTR is to encapsulate and decapsulate
packets. The OpenLISP implementation provides these functionali-
ties.

¢ Mapping information
To let OpenLISP encapsulate packets mapping information has to be
exchanged over the ALT network. The OpenLISP implementation has
to send the map control packets over the ALT network.

In the next sections will be explained how these parts can be imple-
mented with current open source software or, in case they do not exist,
should be build. For implementation testing the LISP4 (Section 3.3.3) net-
work is used. Ripe has provided NLnetLabs with an eid prefix to build a
tail-peering.

5.1 Gre

To build a GRE connection to the ALT network an implementation of the
protocol is needed. The GRE protocol is a simple protocol [18] that encap-
sulates the orginal packet with a second ip header.

Since OpenLISP is currently only available for FreeBSD, this operating
system is used as the testing platform. FreeBSD has a native implementa-
tion [19] of the GRE protocol. This only has to be configured with the details
provided by Ripe to connect to the endpoint. In most implementations GRE
can be configured as an extra interface as is the case in FreeBSD.

19

Implementing OpenLISP with LISP+ALT

To configure a GRE interface the ifconfig command can be used. Since
Ripe provided the details this was a simple case of filling in the right values.

FreeBSD gre configuration
[root@phobos ~1# ifconfig gre0 240.0.254.169 240.0.254.168 netmask
255.255.255.252 tunnel 213.154.224.103 193.0.0.170

[root@phobos ~]# ifconfig grel

gre0: flags=9051<UP,POINTOPOINT, RUNNING, LINKO, MULTICAST> metric 0 mtu 1476
tunnel inet 213.154.224.103 --> 193.0.0.170
inet 240.0.254.169 —--> 240.0.254.168 netmask Oxfffffffc

[airwolf@phobos ~] ping 240.0.254.168

PING 240.0.254.204 (240.0.254.168): 56 data bytes

64 bytes from 240.0.254.168: icmp_seqg=0 ttl=255 time=6.185 ms
64 bytes from 240.0.254.168: icmp_seg=1 ttl=255 time=6.197 ms
-—— 240.0.254.204 ping statistics --—-

2 packets transmitted, 2 packets received, 0.0\% packet loss
round-trip min/avg/max/stddev = 6.185/6.191/6.197/0.006 ms

52 Bgp

Since we now have a GRE tunnel to the ALT network, the assigned EID prefix
has to be announced to the Ripe core router. FreeBSD doesn’t have native
support for BGP, but there are several others available. A frequently used
BGP implementation is the BGP daemon in the Quagga routing suite. This
suite supports multiple routing protocols and allows the protocols to adjust
the routing table through a routing management daemon.

As explained in Section 3.3.1 only the core ALT routers hold the full
routing table, tail peerings such as the one from NLnetLabs should only
announce their prefixes into the network. This leads to a simple configu-
ration, because only a bgp neiggbour and the prefix announcement has to
be setup. In a live situation it would be advisable to also use filtering to
prevent spurious routes to be installed.

All the Quagga daemons provide a Cisco like interface which is acces-
sible through telnet. To announce the prefix only the router-id, prefix and
the Ripe neighbour have to be provided.

Quagga bgpd configuration

router bgp 2147483677

bgp router-id 153.16.36.254

network 153.16.36.0/24

neighbor 240.0.254.204 remote-as 2147483671

This should be enough to have a Peering into the LISP4 ALT network.
However the BGP daemon soon after the connection was made.

20

Implementing OpenLISP with LISP+ALT

Quagga bgpd crash
2009/01/13 10:27:27 BGP: BGPd 0.99.11 starting: vty <at> 2605,
bgp@<all>:179

2009/01/13 10:33:30 BGP: 240.0.254.204 unrecognized capability code:
67 - ignored

2009/01/13 10:33:31 BGP: Assertion ‘len < str_size’ failed in file
bgp_aspath.c, line 619, function aspath_make_str_count

2009/01/13 10:33:31 BGP: No backtrace available on this platform.
Abort trap: 6

In the LISP4 network asn32 AS numbers are used. The Quagga bgpd
does have support for this in the unstable version, however it seemed that
the daemon has a fixed maximum length of AS numbers (6 digits). Since
the LISP4 network uses 10 digits AS numbers, the daemon crashes if there
are long AS numbers in the BGP as_path.

During the reseach project a quick fix was done and the bug reported
on a Quagga mailinglist [20].

5.3 Encapsulation

An XTR should be able to encapsulate and decapsulate the packets since
that is its main function. OpenLISP provides this function if it can find a
mapping for the endpoint ID. Since OpenLISP sends packets to the locator
ID it is routed over the “normal” internet instead of the ALT network. So
for the OpenLISP implementation no special configuration is needed.

However there is one situation when OpenLISP should send packets
onto the ALT network. In case when there is no mapping for the endpoint
ID OpenLISP should encapsulate the packet with a LISP header and outer
IP header. The destination address of the inner header should be copied to
the outer header, making the packet a data probe. This packet should be
send onto the ALT network.

In the current implementation of OpenLISP the packet is discarded when
there is no mapping in the database (and the system is not able to normally
route the packet). In order to have a full implementation of the LISP draft a
data probe mechanism should be implemented.

5.4 Mapping Information

To decrease to size of the routing table an XTR should send map-requests
over the ALT network. As explained in Section 4.2.2, OpenLISP is only
a kernel patch with an API. This means that there is a seperate daemon
necessary to send map-requests over the ALT network.

At time of writing a mapping daemon still has to be developed, devel-
oping a daemon is out of the scope of this research project. This means
that interoperability between OpenLISP and a LISP+ALT network is not yet
possible. It is however that this is the only “part” missing for succesfull
integration. This section will describe the requirements and functional de-
sign for the mapping daemon that is needed.

21

Implementing OpenLISP with LISP+ALT

5.4.1 Requirements

For basic interoperability a mapping daemon with the following require-
ments is needed:

¢ Communication with OpenLISP kernel api socket.

- Write mappings to database through MAPM_ADD operation.

Read mappings from database through MAPM_READ operation.

Retrieve information from database through MAPM_GET opera-
tion.

Listen on mapping socket for MAPM_MISS, MAPM_BADREACH, or
MAPM_REACH operation.

® LISP mapping messages.

- Sending map-request, triggered by socket operation.
- Listening on well-known udp port 4342

- Sending map-reply message with information from database,
triggered by a received map-request message.

5.4.2 Functional Design

A functional design for the mapping daemon can be seen in Figure 11. This
design provides functionality for three scenarios.

¢ If the XTR has to encapsulate a packet where it has no mapping for,
a map-request is send. The API uses the MAPM_MISS operation that
triggers the daemon to send the packet. This packet is send over the
gre tunnel into the core ALT network.

¢ If a map-request from the ALT network is received a map-reply is
send. The map reply has to be filled with information from the map-
ping database and can only be send if the XTR is authoritative for the
requested prefix.

e If the XTR receives a data probe it should let the api send a message
to send a map-reply. As explained in Section 5.3 data probes are not
yet supported. Since the daemon already communicates with the api
and is capable to send map-replies, it won’t be a problem to let the
daemon respond on a data probe.

These scenarios mean that the daemon could function both as an ITR
and ETR. In the draft the devices are still seperated. The daemon should be
able to function as just an ITR or ETR if set by a management function.

22

Implementing OpenLISP with LISP+ALT

LISP+ALT

GRE Interface

Mapping UDP 4342
Daemon
Map-reply Map-request Map-reply || Map-request

J

Sen

mapping socket

d on

Listen on
mapping socket

[

o

V V Vv

ADD

DELETE

GET

MISS

BAD

REACH
REACH c

OpenLISP API

Mapping Table

FreeBSD Kernel

Figure 11: Functional mapping design

23

Implementing OpenLISP with LISP+ALT

6 Conclusion
Reviewing out research question from Section 1.

Is it possible to let the OpenLISP implementation interoperate with a
LISP+ALT network by using existing open source software?

At this time can be concluded that it is not possible to let the OpenLISP
implementation interoperate with a LISP+ALT network. The OpenLISP im-
plementation is based on the LISP draft, however it is developed according
to unix principals where a daemon in userspace is needed to fill and update
the mapping table. In the current version of OpenLISP such a daemon is
not included and there is also no third party daemon available. In Section
5.4 requirements and a functional design are described for such a daemon.

To let OpenLISP interoperate with a LISP+ALT network also the GRE
and BGP protocols have to be available. They are implemented according
to the standards and as described in Section 5 no considerable problems
were encountered when the FreeBSD GRE or Quagga BGP implementations
were tested with the LISP4 NETWORK.

The current OpenLISP encapsulation does not need any extra features
to interact with the LISP+ALT network. However it does not have support
for the data probe mechanism, while it is specified in current LISP draft.
It is still debated if it is needed for the protocol, but if OpenLISP would
support the data probe it could be tested against other implementations
and in combination with a mapping daemon.

6.1 Further research

This research is done in a four week project and has lead to the following
future research questions.

¢ Development of mapping daemon
The absence of the mapping daemon is the only part missing to let the
OpenLISP implementation interoperate with the LISP+ALT network
ans should be developed to keep the development of the lisp protocol
and mapping system multiplatform. NLnet Labs intends to develop
this daemon in the near future.

¢ Security in OpenLISP and LISP+ALT implementation
The preliminary LISP threat analysis [21] shows that if the mapping
database can be manipulated several attacks are possible. The LIsSP
protocol was build to provide scalability it does not rely on a PKI in-
frastructure. Building a scalable authentication, based on open stan-
dards and if possible open source software would be a good addition
to the LISP protocol.

24

Implementing OpenLISP with LISP+ALT

* Location of core LISP+ALT routers
In the LISP4 network core routers are placed at RIR’S to provide ef-
ficient aggregation. An interesting research would be if the RIR’S are
indeed the best location to manage and host the core routers. For
example organisations such as the SIDN already have operational re-
sponsibility and could still provide aggregation.

25

Implementing OpenLISP with LISP+ALT

References

[1] D. Farinacci et al., Locator/id separation protocol (lisp), 2008, http:
//tools.ietf.org/html/draft-farinacci-1lisp-11.

[2] V. Fuller et al., Lisp alternative topology (lisp+alt), 2008, http://
tools.ietf.org/html/draft-fuller-lisp—-alt-03.

[3] C. Systems, Nx-o0s, http://www.cisco.com/en/US/products/
pPs9372/index.html.

[4] L. Iannone et al, Openlisp ~ implementation re-
port, 2008, http://tools.ietf.org/html/
draft-iannone-openlisp-implementation-01.

[5] Routing research group, http://www.irtf.org/charter?
gtype=rg&group=rrg.

[6] Y.Rekhter and T. Li, A border gateway protocol 4 (bgp-4), 1995, http:
//www.ietf.org/rfc/rfcl771.txt.

[7] V. Fuller et al., Classless inter-domain routing (cidr), 1993, http:
//www.fags.org/rfcs/rfcl519.html.

[8] 2009, http://bgp.potaroco.net/as2.0/bgp-active.html.
[9] Shimé working group, http://tools.ietf.org/wg/shimé/.

[10] M. O’Dell, An alternate addressing architecture for ipv6, 1997, http:
//tools.ietf.org/html/draft-ietf-ipngwg-gseaddr-00.

[11] Internet architecture board, http://www.iab.org.

[12] D. Meyer et al., Report from the iab workshop on rout-
ing and addressing, 2006, http://tools.ietf.org/html/
draft-iab-raws-report-02.

[13] L. Mathy, L. Iannone, and O. Bonaventure, Towards a dht to map
identifiers onto locators, 2008, http://inl.info.ucl.ac.be/
system/files/draft-mathy—-1isp-dht-00.txt.

[14] J. Curran et al., Eid mappings multicast across cooperat-
ing systems for lisp, 2007, http://tools.ietf.org/html/
draft-curran-lisp-emacs-00.

[15] D. Meyer et al, A content distribution overlay network
service for lisp, 2008, http://tools.ietf.org/html/
draft-meyer—-lisp—-cons—04.

26

http://tools.ietf.org/html/draft-farinacci-lisp-11
http://tools.ietf.org/html/draft-farinacci-lisp-11
http://tools.ietf.org/html/draft-fuller-lisp-alt-03
http://tools.ietf.org/html/draft-fuller-lisp-alt-03
http://www.cisco.com/en/US/products/ps9372/index.html
http://www.cisco.com/en/US/products/ps9372/index.html
http://tools.ietf.org/html/draft-iannone-openlisp-implementation-01
http://tools.ietf.org/html/draft-iannone-openlisp-implementation-01
http://www.irtf.org/charter?gtype=rg&group=rrg
http://www.irtf.org/charter?gtype=rg&group=rrg
http://www.ietf.org/rfc/rfc1771.txt
http://www.ietf.org/rfc/rfc1771.txt
http://www.faqs.org/rfcs/rfc1519.html
http://www.faqs.org/rfcs/rfc1519.html
http://bgp.potaroo.net/as2.0/bgp-active.html
http://tools.ietf.org/wg/shim6/
http://tools.ietf.org/html/draft-ietf-ipngwg-gseaddr-00
http://tools.ietf.org/html/draft-ietf-ipngwg-gseaddr-00
http://www.iab.org
http://tools.ietf.org/html/draft-iab-raws-report-02
http://tools.ietf.org/html/draft-iab-raws-report-02
http://inl.info.ucl.ac.be/system/files/draft-mathy-lisp-dht-00.txt
http://inl.info.ucl.ac.be/system/files/draft-mathy-lisp-dht-00.txt
http://tools.ietf.org/html/draft-curran-lisp-emacs-00
http://tools.ietf.org/html/draft-curran-lisp-emacs-00
http://tools.ietf.org/html/draft-meyer-lisp-cons-04
http://tools.ietf.org/html/draft-meyer-lisp-cons-04

Implementing OpenLISP with LISP+ALT

[16] E. Lear et al., A not-so-novel eid to rloc database, 2008, http://
tools.ietf.org/html/draft-lear-lisp-nerd-04.

[17] D. Jen et al., A practical transit mapping service, 2007, http:
//tools.ietf.org/html/draft-jen-apt-01.

[18] D. Meyer et al., Generic routing encapsulation (gre), 2000, http:
//tools.ietf.org/html/rfc2784.

[19] Freebsd gre, http://www.FreeBSD.org/cgi/man.cgi?query=
gre.

[20] A. de Groot, Bgpd crash on long asn32 in aspath, 2009, http://
article.gmane.org/gmane.network.quagga.user/9956/.

[21] M. Bagnulo, Preliminary lisp threat analysis, 2007, http://tools.
ietf.org/html/draft-bagnulo-lisp-threat-01.

27

http://tools.ietf.org/html/draft-lear-lisp-nerd-04
http://tools.ietf.org/html/draft-lear-lisp-nerd-04
http://tools.ietf.org/html/draft-jen-apt-01
http://tools.ietf.org/html/draft-jen-apt-01
http://tools.ietf.org/html/rfc2784
http://tools.ietf.org/html/rfc2784
http://www.FreeBSD.org/cgi/man.cgi?query=gre
http://www.FreeBSD.org/cgi/man.cgi?query=gre
http://article.gmane.org/gmane.network.quagga.user/9956/
http://article.gmane.org/gmane.network.quagga.user/9956/
http://tools.ietf.org/html/draft-bagnulo-lisp-threat-01
http://tools.ietf.org/html/draft-bagnulo-lisp-threat-01

	Introduction
	Scalability of Internet Routing
	BGP and the Default-Free-Zone
	Splitting location and ID

	Locator ID Separation Protocol
	Encapsulation
	Mapping information
	Life of a Packet in the LISP Protocol

	Mapping system
	LISP+ALT
	Routing in LISP+ALT
	LISP4

	OpenLISP
	Packet encapsulation
	Incoming packets
	Outgoing packets
	MTU Management

	Mappingtable implementation
	Command line tools
	API

	Implementing OpenLISP with LISP+ALT
	Gre
	Bgp
	Encapsulation
	Mapping Information
	Requirements
	Functional Design

	Conclusion
	Further research

