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Abstract

The goal of this research project is to find out if ICMPv6 Packet Too Big (PTB)
messages can be used to improve a name server’s responsiveness.

Path MTU Discovery (PMTUD) is a mechanism used to signal the sender that
its packet does not fit in the MTU of a link along its path. The sender receives a
PTB message, which contains the MTU of the next link. In IPv6, the ICMPv6 PTB
also contains as much of the original packet that would fit on the next link.

A DNS response includes the question that generated the response. However,
DNS name servers are stateless and do not remember the queries that generated the
response. Once a question has been answered, it is forgotten. A client would have
to timeout and requery the server to get the answer.

The aim of this research is to make use of the information in ICMPv6 PTB
messages to give a sense of state to name servers, and resend the response to the
client. This would improve the responsiveness of the name server, as it does not
have to wait for the client to time out and resend the query. Three solutions of
using PTBs are presented in this report, and we covered the effects they would have
if implemented. Packet captures provided by SURFnet and SIDN are analyzed to
provide statistical data from real name servers. A test implementation of one of the
solutions is performed using the RIPE Atlas network, and observations are made on
the results.

The main conclusion of this paper is that PTB messages do contain enough
information to be used by name servers to resend the response to the client.
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1 Introduction

HE Domain Name System (DNS) is an essential component of the current Internet. It
T is responsible for associating information, such as IP addresses, with domain names.
DNS normally uses User Datagram Protocol (UDP) as the transport layer protocol. UDP
is an "stateless” and ”unreliable” protocol, in that it does not implement acknowledge-
ments or retransmission. By using UDP, DNS is relatively fast, and if a client does not
get a response in due time, it can query the server again, or try a different server.

The classical DNS protocol limits the response size over UDP to 512 bytes. When a
response does not fit in the available size, it will be truncated. In this case the TC flag
in the response is set and the client should resend the query over TCP.

Original DNS Does not have any security mechanism to prevent forging the source or
the contents of the response. The Domain Name System Security Extensions (DNSSEC)
is introduced to provide authenticity and origin integrity. DNSSEC causes the zone
information to be cryptographically signed. Those cryptographic signatures are conveyed
in the responses, resulting into larger responses.

With the growing trend towards using DNSSEC (especially after the root zones being
signed in 2010), we expect larger DNS responses to become more frequent. The Extension
mechanisms for DNS (EDNS) introduced (among others) a mechanism for DNS clients
and servers to agree on a larger response size over UDP. With EDNS, the name servers
are allowed to exchange larger responses over UDP.

The immediate effect of having large DNS messages over UDP is the possibility of frag-
mentation. Every link in the Internet is capable of transmitting packets with a certain
size, which is called Maximum Transmission Unit (MTU). Packets larger than this limit
must be fragmented before being sent over that link. As shown in Figure 1, using UDP,
when the response is smaller than the size defined in EDNS option, but it is not small
enough to be sent as a single network packet, it has to be fragmented.

T T - = oK oK Fragmented TC

VoY oy vVov oy

512 EDNS size MTU 512 MTU EDNS size

Figure 1: Effect of response size on its status over UDP

Although fragmentation addresses the issue with large DNS responses that are sent over
UDP, the client-side firewalls might filter fragments [1]. In IPv6, routers are not allowed
to fragment the packets. Fragmentation must be done by the end hosts. Those end
hosts have to do Path MTU Discovery (PMTUD) to find out the smallest MTU in the
path towards the destination. In the PMTUD process, the source sends a packet into
the network. If the packet encounters a router with a smaller MTU, it is dropped and
an ICMPv6 PTB is sent back to the source. There is a similar message in IPv4, called



"ICMP fragmentation needed”. The main difference between the ICMPv6 PTB and its
corresponding message in IP4 is that in the former, in addition to the passable MTU by
the router, it contains the trimmed part of the original message. So looking at the PTB,
one can see the part of the message that can traverse the path trough the router.

1.1 Research objective

In this research, we are interested in leveraging the extra payload in ICMPv6 to increase
responsiveness of name servers in the case of having large responses. The advantage of
ICMPv6 PTB, which makes it helpful for our problem is that it contains the first part
of the payload of the dropped message, which can fit into the minimum MTU supported
by all IPv6 routers (1280 bytes). Having the returned ICMPv6 PTB, the server would
be able to find out the original query, in addition to the appropriate MTU size. In this
research, we will explore several approaches to utilize this information.

1.2 Research question

This project is mainly aimed to answer the following question:

Is it feasible to leverage the original packet payload in ICMPv6 to increase a name server
responsiveness?

The sub-questions that will be answered in this report will be:
What strategies can be applied and what effects and risks would they have?
How would this be best implemented?

What is the impact of fragmentation and PMTUD on the performance/responsiveness
of DNS servers?



1.3 Related work

Previous research related to the topic of this project has been done by Maikel de Boer and
Jeffrey Bosma, on the IPv6 Path MTU black holes, caused by ICMPvV6 filters or fragment
filters [1]. They made use of the RIPE Atlas network in order to find ICMPv6 filters or
fragment filters, which cause IPv6 Path MTU black holes. Their research is relevant to
our project, because it gives us information regarding IP fragment filtering, which is one
of the issues that we have to take into consideration for this project.

In a recent research by Gijs van den Broek et. al. [4], real-world resolvers are moni-
tored to analyze their behavior, when dealing with fragmented DNS responses. In this
work, two server-side solutions are offered and tested to prevent the responses from being
fragmented. The idea in the first solution is to set the maximum response size to 1232
bytes. The second solution is more complicated. It needs to implement a module for
dynamically adjusting the EDNS size option in queries related to the resolvers behind
fragment-filtering firewalls.

There is an Internet-draft written by Mark Andrews [5], mentioning that PMTUD does
not work well with the stateless DNS, because there is no automatic mechanism for
handling PTB messages in name servers. He recommends to enable IPV6_USE_MIN_MTU
socket option in IPv6 to fragment packets at the minimum IPv6 MTU, instead of using
PMTUD. In other words, the name servers are encouraged to fragment the responses at
the smallest possible size, in order to avoid receiving PTB messages.

1.4 Outline

The core concepts of fragmentation and PMTUD are presented in Section 2. Packet
Too Bid and Fragment Reassembly Time Exceeded messages are discussed in Subsection
2.3 and we describe their importance to this research. In section 3, we describe the
resources that were used. The packet captures from SURFnet and SIDN are treated
in separate subsections, as well as the initial RIPE Atlas experiment. The proposed
solutions are presented in 4, followed by their implications and implementation options.
A test implementation of solution 2 is described and analyzed in Section 5, followed by
the conclusions of this paper in Section 6.



2 Background concepts

In this chapter, protocols and mechanisms relevant to our research are discussed more
in-depth.

2.1 Fragmentation: IPv4 vs IPv6

In IPv4, fragmentation and reassembly of packets can be handled by the routers in the
middle, completely transparent for the end-nodes. When a router receives a packet larger
than the MTU of the next link, it can break it into multiple smaller ”fragments” not
larger than that MTU. Routers further down the routing-path of a packet can reassemble
those fragments to reconstruct the original packets.

End-nodes may set the Don’t Fragment (DF) bit in the IPv4-header to indicate that
routers may not perform fragmentation. In this case, when a router receives a packet
larger than next link’s MTU, an ICMP ”Fragmentation Needed” message containing the
MTU is returned. The sender should resend smaller packets according to the new MTU.
This sequence of events may repeat until the data reaches the destination. This process
is called Path MTU Discovery (PMTUD) and tries to find the smallest MTU in the path.
PMTUD is explained in more detail in subsection 2.2. With IPv6, fragmentation is only
allowed end-to-end and nodes run a PMTUD algorithm to discover the proper packet size
that can go through the path. When a router receives a packet larger than its MTU size,
it drops the packet and sends an ICMPv6 Packet Too Big (PTB) message back to the
sender.

Traditionally, name servers do not work well with PTB. Name servers do not keep state,
and thus do not remember queries or responses. Upon reception of an IPv4 ”Fragmenta-
tion Needed” messages, the name server cannot reproduce the answer and the requester
will not get it. Current name servers handle IPv6 PTB similarly and simply ignore
them.

Modern name servers avoid PTB to occur at all, by fragmenting to 1280 bytes. However,
unlike the IPv4’s PTB compeer !, the IPv6 PTB contains a fair piece of the original
payload.

One way to circumvent PMTUD with IPv6 is to make sure no packets larger than the
minimum PMTU are sent [5]. With this method, all responses larger than 1232 bytes
(1280 bytes - 8 bytes UDP header - 40 bytes IP header) will be fragmented.

Another way, is to make sure that the maximum (EDNS) response size is 1232 bytes [4].
This will prevent PMTUD and fragmentation, but will result in more truncated responses.
More truncated responses will in turn lead to more TCP connections to the name server,
which increases the load of the name server (because of the overhead of the state that
needs to maintained for TCP).

1Destination unreachable, the datagram is too big. Packet fragmentation is required, but the ”Don’t
fragment” (DF) flag is on



2.2 PMTUD

When an IPv6 host sends a large message to another host over UDP, it is fragmented
into multiple IPv6 packets. The size of the fragments should be the largest value that
can successfully go through the path between the two nodes. This size is equal to the
minimum link MTU of all the links in a path and is called Path MTU (PMTU). The MTU
is dynamically discovered using a Path MTU Discovery (PMTUD) mechanism.

In PMTUD, first the source sends the message using the MTU of the first link in the
path. If any of the routers in the path has a smaller MTU, it will drop the packet and
return an ICMPv6 Packet Too Big (PTB) message to the source. By receiving such a
message, the source decreases its optimistic assumption of the PMTU. The same process
might reoccur when the source sends the message again using the new PMTU. The value
of the PMTU is cached at the source (by destination IP) and new traffic will use the
learned PMTU.

Changes in the routing topology may cause the PMTU of a path change over time.
Estimated PMTU in the source is reduced after receiving PTB messages. Each host
increases its estimation of PMTU periodically to become aware of the likely increases
in PMTU. In most cases, this increasing causes packet dropping and PTB generation.
Therefore, it is recommended that the time interval between two increments to be a
large enough. In other words, when the host learns the Path MTU, it must not perform
PMTUD for discovering larger MTUs for a certain amount of time (5 minutes) and the
recommended setting is twice of this value (10 minutes) [3].

In the case of TCP communication, the maximum segment size (MSS) is advertised
at the beginning of the TCP session. After the two nodes participating in a session
have advertised their preferred MSS, the lowest one will be chosen for the session. The
advertised MSS, in case of IPv6, will be 60 bytes smaller than the MTU, which is needed
for headers. The MSS is adapted after the receipt of a PTB message, as the PTB adjusts
the MTU on the source. This is possible over TCP, but not when using UDP, because
with TCP the packets are remembered until they are acknowledged.

2.3 ICMPv6

This section will describe the ICMPv6 messages used in this project, why they are rele-
vant, and how we make use of the information contained in them. The section is based
on RFC 4443, in which the ICMPv6 protocol is specified.

2.3.1 Packet Too Big

A Packet Too Big (PTB) message will be originated by a router along a path when a
packet will not be able to fit through the next link of that router along that path. It will
compare the size of the packet to the MTU of its next link, and if the size of the packet
will be larger, it will send back an ICMPv6 PTB message to the source that sent that
packet. In our case the source will be the DNS server.
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Figure 2: DNS response

An example of a DNS response is shown in Figure 2, with the question section as part
of the response.

The format of a PTB message [2] is illustrated in Figure 3:

0 1 2 3
01234567890123456789012345678901
B S s e T T e R A S N e at ek T I S S e 3
| Type | Code | Checksum |
B S s e T T e R A S N e at ek T I S S e 3
| MTU |
B S s e T T e R A S N e at ek T I S S e 3

| As much of invoking packet
+ as possible without the ICMPv6 packet +
| exceeding the minimum IPv6 MTU [IPv6] |

Figure 3: Packet Too Big message format

Operating systems use PTB messages to store the MTU of that path. Next time it will
have to send a message on that same path, it will use the new MTU instead.

When a smaller MTU is present behind the signalling router, the process repeats itself
until the minimum MTU up to the destination is learned. For example, if the initial MTU
is 1500 bytes, but there is a link along the path to a destination with MTU of 1280 bytes,
the router with that link will originate a PTB. This process is shown in Figure 4.

One of the focuses of this project is to make extra use of PTB messages. Up to now,
these messages have been ignored by name servers, but we aim at extending their func-
tionality.

2.3.2 Time Exceeded Message

Another commonly found ICMPv6 error message during this project was the Time Ex-
ceeded Message. There are actually two types of TEM messages: Hop limit exceeded in
transit, and Fragment Reassembly time exceeded.
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Figure 4: Path MTU Discovery

A Fragment Reassembly Time Exceeded (FRTE) message is originated from an end-host,
if it did not succeed in reassembling all the fragments of a packet. Section 4.5 of RFC
2460 (specification of IPv6) states that if the packet cannot be reassembled in 60 seconds
after the reception of the first fragment, a Fragment Reassembly Time Exceeded message
will have to be sent back to the source.

All ICMPv6 messages with type <100 contain the same last field as the PTB, in which
as much of the original message is stored. The format of Time Exceeded messages is
almost identical to the format of PTB messages, and will thus not be repeated. The two
differences are:

e The Code field is used to identify either Hop Limit Exceeded messages (code=0) or
Fragment Reassembly time exceeded messages (code=1)

e The MTU field found in PTB messages is not used in this case, and set to 0.

FRTE messages are relevant to this project, because it is an indication that fragments
are being filtered along the path. This packet will reach its destination, triggering the
timeout counter, in which all fragments should be delivered. However, no other fragments
will be received due to the fragment-filtering firewalls, and thus, the client will send back
an ICMPv6 Fragment Reassembly Time Exceeded message.

Although these messages aid a lot in detecting the problem, we will not be using them in
any of our solutions. The reason for this is that the requester will wait for 60 seconds before
sending back an FRTE. However, they are of great use in troubleshooting fragmentation
issues.
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3 Real-world observations

During this research project, we were provided with packet traces captured on name
servers from both SURFnet and SIDN (registry for .nl ccTLD). The captures from
SURFnet span a one hour period, and were done on 8 name servers. SIDN captures
were done over a period of two hours. The data we gathered from these traces is dis-
cussed in the following subsections.

The experimental setup we used consisted of a name server located on the NLNOG Ring,
which was queried by probes in the RIPE Atlas network. The NLNOG Ring is a network
of servers, on which every member of the Ring has access, while in turn giving access
to other members to its server. Its creation was an initiative to streamline cooperation
between network operators, which would commonly make ”shell access” deals with other
network operators. Using the Ring can give a very useful outside point of view of one’s
network. The server was only running IPv6 on its ethO interface, and NSD 3.2.14 was
used for the name server. The name server was modified to send out packets larger than
1280 bytes, as opposed to draft-andrews-dnsext-udp-fragmentation-01 [5].

The Atlas experiment and the analysis of the packet traces from SURFnet and SIDN
have been carried out to show the relevance of this research project. These will provide
a baseline in order to determine the effect of our proposed solutions.

>
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Figure 5: RIPE Atlas network of probes

RIPE Atlas is a real-time Internet measurement network. It is a project that was started
by RIPE NCC and aims at deploying thousands of probes, which are used to measure
the infrastructure of the Internet in real-time. Figure 5 shows the distribution of probes
around the world. Probes are small USB devices that can be used to run various network
measurements, defined in the interface provided by RIPE Atlas. Because our project
focuses on IPv6 protocols, all the probes used in the experiment had to be IPv6-ready.
The 2012 review states that there are over 800 IPv6-ready Atlas probes [6].
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3.1 SURFnet packet captures

The SURFnet traces are the result of capturing the DNS traffic at 8 different name servers,
during 1 hour, on January 15, 2013. All of the authoritative name servers are running
BIND 9.8.2 and the resolvers run Unbound 1.4.19.

Some information obtained from these captures are demonstrated in Table 1. Although
the ratio of IPv6 messages are way less than the IPv4 ones, it is expected that in near
future, we see a significant growth in utilizing IPv6 addresses.

Table 1: SURFnet name servers IPv4/IPv6 ratio
Server IPv4 IPv6 | Number of Packets
nsO.amsterdam1.surf.net | 94.49% | 5.51% | 5915213 (29.57%)

ns0.nijmegenl.surf.net 91.58% | 8.42% | 3999195 (19.99%)
ns0.tilburgl.surf.net 84.11% | 15.89% | 5386692 (26.93%)
nsl.surfnet.nl 87.18% | 12.82% | 2699609 (13.50%)
nsl.zurich.surf.net 91.69% | 8.31% 383691 (1.92%)
ns2.surfnet.nl 93.16% | 6.84% 1009883 (5.05%)
ns3.surfnet.nl 92.95% | 7.055% 510285 (2.55%)

ns6.amsterdam1.surf.net | 90.39% | 9.61% 99444 (0.50%)
89.95% | 10.05% | 20004012 (100%)

Figure 3.1 compares the cumulative response size distribution in IPv4 versus IPv6. It
can be inferred that dealing with large DNS responses is a more important issue in IPv6.
Our hypothesis about the cause of this observation is that utilization of DNSSEC is more
common in IPv6. One explanation is the people who support a pretty novel protocol, like
IPv6, also care more about using security extensions like DNSSEC. We will come back
to this issue again in this section.

Another observation in the SURFnet traces is related to the ratio of UDP and TCP
packets. In case of IPv4, about 0.008% of responses are sent over TCP and in Ipv6
traffic, this ratio is even less, about 0.004%. According to the previous observation, in
IPv6, DNS responses are generally larger than in the ones in IPv4 case, so one might
expect to see more truncated responses in IPv6. However, it seems that the clients who
are utilizing IPv6, configure the size option in EDNS to a large value.

Note: From what discussed above, it can be inferred that having large DNS responses is
more common in IPv6 rather than IPv4 and using IPv6 is evergrowing. Therefore, inves-
tigating the consequences of having such messages in IPv6 is a crucial issue. Therefore, in
this section, we focused on the IPv6, and by DNS response, UDP, TCP or IP packets and
other similar messages, we are referring to the corresponding concepts in IPv6.

One of our concerns about the traces is finding the information about the large DNS
responses and figuring out how the name servers deal with these messages. As shown in
Table 2, most of DNS responses are smaller than 1232 bytes and they are small enough
to fit in a single IP packet. A small number of the messages are larger than 1452 bytes
and must be fragmented before being sent over UDP. For the messages in the middle
range (between 1232 and 1452 bytes), depending on the policy, they may or may not be

12
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fragmented. For example, given a DNS response with the size of 1300 bytes, if generally,
the responses are sent by breaking them into 1280-byte IP fragments, the given response
has to be sent as two fragments. However, if the server apply fragmentation by size of 1480
bytes, the message can go through the network without any need to fragmentation.

Table 2: SURFnet response sizes

Sizes Number of responses
1-1232 bytes 97.77%
1233-1452 bytes 2.14%
1453-65535 bytes 0.07%

As we discussed in Chapter 1, the main cause of appearing large DNS responses is signing
the zone data using DNSSEC. The statistics obtained from the captures show that from
the total IPv6 traffic 30.04% is related to DNSSEC traffic and almost all of it is transferred
over UDP (TCP share is only 0.003%).

We also inspect the traces to see if there are any non-DNSSEC messages, which cause
having large messages. The results of this inspection is demonstrated in Table 3. It is
noticeable that DNSSEC is the most important reason for the DNS responses to become
large. We noticed that some other big responses also exists in the captures which are
non DNSSEC. However, there are a few of them and they are caused by very large TXT

13



records, multiple TXT records, or having multiple PTR records in the RRset of the
answer.

Table 3: SURFnet large response

1233-1452 Bytes | 1453-65535 Bytes
DNSSEC 43165 1544 44709 (99.95%)
large TXT records 1 6 7 (0.02%)
Multipe PTR records 0 17 17 (0.04%)
43166 1567 44733

According to this table, our hypothesis about the first observation seems to be true.
Nearly, all of the large responses in IPv6 are resulted from signing the zone data using
DNSSEC. Having large responses in IPv6 is more common than IPv4, because DNSSEC
is more popular among IPv6 users.

Another matter of interest for us is the number of fragmented responses. Table 4 shows
the number of fragmented responses, grouped according to their sizes. As we except larger
responses are more influenced by fragmentation. Contrary to our expectation, most of
the messages with the size in range between 1232 and 1452 are responded without being
fragmented. In this case, we expected to see many PTB messages.

Table 4: SURFnet fragmented responses
1232-1452 Bytes | 1453-65535 Bytes | Total
Fragmented DNS responses 43 (7.28%) 548 (92.72%) 591

Table 5 shows the payload length of each fragment in the fragmented messages. The two
popular sizes for fragmentation by the servers is 1240 and 1456. It means that most of the
messages are fragmented with MTU of 1280 or 1496. The name servers that use MTU of
1280 are the ones that follow the recommended approach in [5]. The ones that fragment
at size of 1496 are using an MTU of 1500 bytes. This is because the ”fragment offset”
field in the fragment header is counted in multiples of 8 bytes.

Table 5: SURFnet fragment payload length

Payload Length | Number of DNS responses
1224 2 (0.34%)
1240 231 (39.09%)
1456 357 (60.41%)
416 1 (0.17%)

Table 6 shows the percentage of ICMPv6 messages with respect to the total number of
IPv6 DNS responses. The ratio of PTB messages are not as big as we expected, so we
cannot explain the observations related to Table 4.

14



Table 6: SURFnet ICMPv6

Type of message SURFnet
Time Exceeded Fragment Reassembly 26(0.001%)
Packet Too Big 16(0.001%)
Administratively prohibited 3624(0.180%)

3.2 SIDN packet captures

Stichting Internet Domeinregistratie Nederland (SIDN) is the official registrar and man-
ager for the country-code top-level domain (cc-TLD) of .nl. SIDN name servers are
responsible for the .nl zone. The SIDN traces are obtained from capturing the IPv6
DNS traffic on one of the SIDN name servers for duration of 2 hours, on February 4,
2013.

As shown in Table 7, similar to the SURFnet traces, most of the response messages are
still less than or equal to 1232 bytes. The difference is in responses larger than 1232 bytes.
For the case of SURFnet, we observed that the number of responses in the range between
and 1232 and 1452 is almost 30 times more than the the number of messages larger than
1452 bytes. We noticed that in the SIDN captures, the number of responses larger than
1452 is almost 165 times more than the number of messages in the range between 1232
and 1452. The reason is there are many queries asking about the NS records signed using
DNSSEC. we will come back to this issue later, in this section.

Table 7: SIDN response sizes

Sizes Number of responses
1-1232 bytes 99.67%
1233-1452 bytes 0.002%
1453-65535 bytes 0.33%

We also noticed that there is no truncated response in the SIDN traces. It is a result of
advertising large EDNS size options by the clients.

We also looked into the DNSSEC traffic. About 54.42% of the total DNS traffic was
signed using DNSSEC. This ratio is more than the observed ratio for SURFnet. As we
expect, using DNSSEC is more common in TLD name servers rather than the name
servers in lower levels. Another observation is that all of the responses larger than 1232
bytes belong to the DNSSEC traffic. These queries are the ones asking

Table 8: SIDN DNSSEC response sizes
1-1232 Bytes 1233-1452 Bytes | 1453-65535 Bytes
DNSSEC | 666941 (99.39%) 34 (0.06%) 4047 (0.60%)

Although all of the large messages are resulted by DNSSEC, most of the DNSSEC re-
sponses are smaller than 1232 bytes. Big responses from the SIDN traces are very similar
and all of them are larger than 1452 bytes. However, we have seen that they would fit in

15



smaller responses, if asked for with a smaller max-response-size EDNSO option. The deliv-
ery of these responses is essential to the validation path in DNSSEC. Given the behaviour
of TLD name servers and their role in DNSSEC, we conclude that a more customized
solution needs to be found for such cases.

Looking at the fragmented responses, we noticed that all of the fragmemnted responses are
larger than 1452 bytes. Table 9 shows that all of the fragmented responses are fargmented
at one of these two sizes: 2218 or 1443 bytes.

Table 9: SIDN fragment payload length

Size (Bytes) | Number of responses
2218 99.85%
1443 0.15%

Table 10 shows the number of ICMPv6 messages in the SIDN traces. Comparing to the
SURFnet traces, We notice an increase in the number of Fragment Reassembly messages,
and an even bigger increase in the number of Administratively Prohibited messages. The
percentages are calculated with respect to the total number of DNS responses.

Table 10: SIDN ICMPv6 messages

Type of message SIDN
Time Exceeded Fragment Reassembly | 333(0.026%)
Packet Too Big 43(0.00%)
Administratively prohibited 7991(0.65%)

3.3 RIPE Atlas experiment
The MTU of the server was set at 1280 bytes to ensure that responses will be fragmented.
In this way, we can deduce which probes filter fragments.

For this experiment, the RIPE Atlas network of probes was used to query a large TXT
record on the name server running on the NLNOG Ring node. The reason for this is that
a response to a query for this record will be larger than 1500 bytes.

A map of the probes used is shown in Figure 6. A total of 442 probes were available for
this experiment, and the captures were taken over a three hour period.
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Figure 6: Probes used in experiment

Figure 7 shows the PMTUs on the paths to the probes which are less than 1500
bytes:

Probe PMTU

70
1

Number of Probes
30 40 50
| | |

20
1

10
1

Figure 7: Atlas Probe PMTU

In this experiment 34 probes originated Fragment Reassembly Time Exceeded messages
(7.6%), and there were 19 sources of Administratively Prohibited messages (4.2%), out
of which 13 had also sent FRTE. Both message types indicate fragment filtering on those
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paths. Our theory is that fragment filtering hosts originate Administratively Prohibited
messages because they do not accept fragments. Further research in the origin of these
messages and their anticipation could provide an improvement in name server responsive-
ness.

Despite the fact that the MTU on the server was set to the minimum IPv6 MTU, one
probe still sent back a Packet Too Big message. This probe’s maximum MTU was of 1240
bytes and could thus only receive messages of at most 1232 bytes.

The data gathered in this experiment can serve as a baseline for future experiments.
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4 Proposed solutions

Because the name server does not keep any state about previous queries, receiving PTB
messages will not trigger resending a smaller packet into the network. However, these
messages contain the original query and also the fitted part of response into the MTU.
This option looks very beneficial to remind the name server about the previous queries,
which were dropped due to the large size of packets. However, current name servers do
not use this facility.

The following subsections describe our proposed solutions to make use of PTB messages
to increase a name server’s responsiveness.

4.1 Solution 1 - TC bit solution

The idea of this approach is this: after receiving a PTB message, a smaller DNS reply
with the contents of the PTB payload can be sent to the client. In this case, the TC flag
in the response is set to 1, indicating that the answer is truncated and the client should
come back to the server with a TCP connection to get the complete answer.

4.2 Solution 2 - Resubmit query

This approach will use the payload contained in the ICMPv6 PTB message to resubmit
the query (contained in the question section of the answer) to the name server. The aim
of this solution is to give a sense of state to the system, but without the overhead that
comes with stateful protocols.

4.3 Solution 3 - Resubmit query with EDNSO0

This solution is similar to the one proposed in case 2, but aims at further improving deliv-
erability of the name server at the cost of giving shorter answers. Similarly to resubmitting
the query such as in the previous case, we would be processing the payload contained in
the PTB message. The main difference is that we would modify the maximum-message-
size EDNSO option. The maximum-message-size option specifies the maximum size of a
DNS response that the client will accept. By using the MTU from the PTB message, we
can compute the length of a DNS response such that it will not get fragmented.

The length of the response can be calculated by subtracting the length of the IPv6 and
UDP headers from the MTU received in the PTB message. For example, if we receive a
PTB saying that the smallest MTU on a path is 1400 bytes, the maximum message size
we would need to set would be:

1400 - 40 (IPv6 header) - 8 (UDP header) = 1352 bytes

This solution relies on the name server to properly adjust the answer to the maximum
message size, and leave out the information that it deems less necessary to the client.
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Although this would give the client a shorter answer (for example omitting the AD-
DITIONAL section), it would circumvent firewall fragment filtering. PMTUD must be
disabled at the OS level, otherwise a second answer would be returned fragmented. The
difference between this solution and the first solution in Gijs’s research [4] is that instead
of limiting the response to the minimum of 1232 bytes, we limit the response according to
the MTU specified by the received PTB. In this we would have less truncated responses
than if we would limit them at 1232.

4.4 Implications

All of the presented solutions aid in mitigating DNS ID hacking. In order to spoof the
answer to a query, the attacker needs to send the response using the source IP of the
name server and the ID of the query, otherwise the client will not accept the answer. The
query ID is a 16 bit value, so the attacker can generate random numbers between 0 and
65535 to find a valid ID. In normal situations, the DNS response comes back from the
server in a short time (a few milliseconds). In a situation like having big DNS responses
that cannot go through the routers and cause ICMPv6 PTB, in current DNS systems,
the client waits until the query expires (about 5 seconds). Because the original answer
never reaches the client due its size, the spoofed answer is easily accepted and used by
the client, which misdirects it to the desired address by the attacker.

According to RFC 1981 about PMTUD in IPv6, there may exist malicious parties who are
willing to give the server wrong information about the path MTU. Since the path MTU
cant be smaller than the IPv6 minimum link MTU, receiving PTB with smaller MTU
than the real value is not a big issue in general. In case of receiving a larger MTU than
the real path MTU, the server may decide to send to a larger packet. This mistake will
be compensated by receiving another PTB. However, repeating this attack can cause lots
of packet drops. As mentioned in this RFC, the server should not increase its estimate of
the Path MTU by receiving a PTB message.

Solution 2 relies on the OS to adjust its MTU for the path, and decrease it to the required
value. In case of larger DNS responses, this could cause additional fragmentation at the
lower levels of the protocol stack. Fragmentation can cause problems due to the fact that
firewalls are sometimes configured to filter fragments as a security measure.

Both case 2 and case 3 would still be susceptible to attacks in which the original packet
is altered. However, these two solutions only handle the question section of the original
answer, and disregard the rest of the answer. Depending on the size of the DNS response,
reducing the maximum message size could cause a small rise in truncated responses. We
do not consider this to be a problem, because it would not even be so prevalent. It would
still be a better option rather than leaving the client without an answer.

There is the possibility of bypassing BCP38 [7] by constructing PTB messages, which
would not require spoofing the source address. An attacker can spoof the IP address
inside the ICMPv6 payload. In this way, the attacker does not need to spoof his own
IP, thus bypassing BCP38. The name server is not able to distinguish forged payloads
from its own generated responses. In this way, an attacker could flood a victim by forging
many PTB messages. Receiving each PTB, the name server will send a response packet
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to the victim. Therefore, the victim receives lots of packets in a short period. So forging
PTB messages can result a Denial of Service (DoS) attack in the clients.

4.5 Implementation

For implementing these methods, there are two options:
1. modifying the name server to receive the PTB messages from the OS
2. developing a server-side module in charge of handling the ICMPv6 PTB messages
It seems the second option is better, because:
e it is a general-purpose solution, which can work well with different DNS software
e it does not affect the normal operation of the name server

We will make use of raw sockets for implementing solution 2, and present the results in
the following sections.
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5 Test and results

This section presents the results gathered from testing the second solution described
in section 4.2. It was implemented with python by using a raw socket to intercept
packets and handle them accordingly. The implementation assumes an EDNS size of
4096 bytes.

d & > 9

1350 1500 1500 1500

Router 2 Name Server

DHSSEC

Client Router 1 Internet
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>

DNSSEC response [1400 bytes]

Path MTU is
cached
Separate process D
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fragment #1 (1350 bytes)

4

Packet Too Big [MTU 1280)

DNSSEC response
fragment #2 {50 bytes)

Figure 8: Implementation of second solution

Figure 8 shows how this solution would function in a normal client-server communica-
tion.

The setup for this test consisted of 427 Atlas probes, and a name server running the same
version of NSD (3.2.14) as in the previous Atlas experiment. The probes queried a 1452
byte TXT record that would fit precisely in packets of 1500 bytes.

Output from the PTB-handling program showed that it successfully handled 56 sources
with PMTU <1500, and only 5 probes still sent back FRTE messages. We can conclude
that the 56 sources had no fragment-filtering firewalls, and 5 did. This confirms previous
estimations [1] that about 10% of the destinations would filter fragments.
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6 Conclusion

In this research, we were mainly concentrated on answering the following question: ”Is
it feasible to leverage the original packet payload in ICMPv6 to increase a name server
responsiveness?” We can concluded that when ICMPv6 PTB are sent for smaller links,
it is feasible to use the payload to assure delivery.

We propose three approaches to make use of ICMPv6 PTB messages. In the first solution,
the name server informs the client to retry the query over TCP. The second solution
resubmits the query from the ICMPv6 payload. The third resubmits the query while
avoiding fragmentation. Each solution can be implemented as a separate process or built
into the name server. We suggest the first option because of its simplicity and portability.
It is discussed that all of these solutions can aid in improving the security issues, such as
DNS response ID hacking. The only security concern that arises from these solutions is
the possibility of forging the PTB message by an attacker, which can result a DoS attack
in clients.

Being able to use the received PTB messages, the name server does not have to fragment
the responses at the minimum IPv6 MTU of 1280. Only when the path MTU to a
host actually demands it, responses will be fragmented. This results in less fragmented
responses and as a consequence less problems with fragment-filtering firewalls.

Using the data gathered from analyzing the SURFnet and SIDN traces, we observed the
response sizes in a live environment and the prevalence of ICMPv6 error messages. We
implemented the second solution and tested it using RIPE Atlas probes. This solution
resulted in more clients receiving an answer without having to timeout.

7 Future work

We have presented three solutions that can solve the problems described. However, due
to the time constraints of the project, we decided to test the second solution. It would be
interesting to see the results of experiments using the first and third solution. A compari-
son between them could help in deciding which solution would be best to implement, and
in which cases. Because of the large numbers of Administratively Prohibited messages,
we suggest that they should be taken into consideration by future implementations of our
proposed solutions.

We perform the test by running a simple query using RIPE Atlas probes. One can
implement and test the solution in more realistic environments to obtain results similar
to the SURFnet traces.

As it was shown in this paper and in previous research, fragmentation is still an issue
in IPv6. However, making use of existing technologies can help solve these problems.
The way in which different name servers choose to fragment their responses is also an
interesting issue to look into, as it affects their deliverability.
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A Abbreviations

BIND
DF

DNS
DNSSEC
DoS
EDNS
FRTE
ICMP
ICMPv6
1P

1Pv4
IPv6
MTU
NSD
PMTU
PMTUD
PTB
RFC
TCP
TLD
UDP
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Berkeley Internet Name Daemon
Don’t Fragment

Domain Name Server

DNS Security Extensions

Denial Of Service

Extension mechanisms for DNS
Fragment Reassembly Time Exceeded
Internet Control Message Protocol
ICMP version 6

Internet Protocol

IP version 4

IP version 6

Maximum Transmission Unit
Name Server Daemon

Path MTU

Path MTU Discovery

Packet Too Big

Request For Comments
Transmission Control Protocol
Top Level Domain

User Datagram Protocol
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