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Abstract

This document describes the research performed during the course of Research Project 2 of the Master’s
in System and Network Engineering at the University of Amsterdam, under the supervision of NLnet
Labs. Research has been done on the use of a proposed protocol called CGA-TSIG as a potential solution
to the last mile problem of the Domain Name System (DNS). A proof of concept has been implemented,
which resulted in the identification of several problems with the proposed protocol. Nevertheless, it
was found that CGA-TSIG can work as believed to be intended, even though the protocol only works on
IPv6. An automated method for authenticating the IP addresses of recursive name servers is additionally
needed for CGA-TSIG to be a useful and fully secure solution to the last mile problem, but research to
such methods was out of the scope of this project and would require future research.
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1 INTRODUCTION

1 Introduction

The Domain Name System (DNS) is a distributed database with the primary goal to provide domain
name to IP address translation. It was designed without security in mind, allowing for vulnerabilities
like IP address spoofing to be exploited. Several improvements have been introduced to make the DNS

more secure, like DNSSEC [1][2][3], DNSCurve [7], and TSIG [19]. DNSSEC provides authentication of DNS

data’s authoritative source, data integrity, and authenticated denial of existence by using public-key
cryptography. DNSCurve provides data integrity and also confidentiality by encrypting the data. TSIG

is a protocol that can be used for assuring data authentication and data integrity of DNS transactions
between two hosts that share a secret key.

Despite the existence of these security protocols, DNS security is still not watertight in most practical
situations. The problem is that client computers in general are forwarding their queries to pre-configured
DNS recursive resolvers, asking them to fetch the answers from authoritative name servers and return
them, usually without any DNS security deployed between the client and the resolver (also known as the
recursive name server). This so-called “last mile” of DNS, which is depicted in figure 1.1, is therefore
vulnerable to man-in-the-middle attacks. The data retrieved from the authoritative name servers by the
recursive name server can usually be secured with DNSSEC, however.

internet

client
(stub resolver)

recursive
name server

last mile

authoritative
name server

authoritative
name server

authoritative
name server

Figure 1.1: The “last mile” is the link between the client and the recursive name server.

There are several reasons why the last mile is usually not secured with the existing security protocols.
First of all, the last mile exists because most client computers come with only a stub resolver installed,
which is a light-weight resolver that cannot do much more than forwarding and receiving DNS messages
to and from recursive resolvers which will do the heavy work. This way, clients do not need to recursively
query multiple name servers and validate the responses with DNSSEC themselves. However, any man in
the middle residing on the last mile will be able to forge DNS responses and validation results if the last
mile has not been secured.

The client may perform DNSSEC validation itself. In order to do so, it needs to build up its own chain
of trust for every DNS response it requests. Alternatively, clients can install and run a recursive resolver
locally to avoid the last mile problem. In both cases, it requires the user to be able to configure and
manage the recursive server, which involves acquiring the DNSSEC root key in a secure way. Although
the key might be included with the operating system, it needs to be retrieved manually if the client
has missed a key roll-over period (which is a rare event, but the consequences can be devastating as
portrayed by Michaelson et al. [15]). In some applications it might also be too expensive to perform the
resolution, caching, and validation locally.

Alternatively, DNSCurve could be used to secure the last mile. Nevertheless, the standardisation process
of the protocol does not seem to be progressing well and the protocol has not seen widespread adoption.
Another possibility is to use TSIG, which adds a smaller worst case computational load for validation
than DNSSEC. However, TSIG requires shared secrets to be exchanged manually and is not scalable. The
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1 INTRODUCTION

protocol is most useful for performing dynamic DNS updates or zone transfers, which usually requires a
relatively small number of hosts to configure shared secret keys that are being managed by a dedicated
system administrator. For the average user, acquiring the secret key poses a problem, and due to the
large number of secret keys that a recursive resolver would need to manage for all its clients it is not
scalable. If a client is moving from network to network, being assigned to different resolvers, it would
need to have a key for each resolver it encounters, impacting the scalability as well.

A solution to TSIG’s key distribution problem has been proposed by Rafiee and Meinel [16]. The proposal
combines TSIG with another existing method, Cryptographically Generated Addresses (CGA), into the
CGA-TSIG protocol. It uses CGA as the algorithm type for TSIG. CGA [6] is an algorithm that was
originally designed to be used with the Secure Neighbor Discovery protocol (SEND) [4] on IPv6 networks.
Unlike standard TSIG, CGA-TSIG uses public-key cryptography to sign DNS messages and uses CGA to
authenticate the public key. As a result, it makes TSIG scalable and therefore useful for the last mile. A
draft for a proposed RFC on CGA-TSIG has been submitted to the IETF [17]. It can be investigated how
well this protocol could be used as an alternative solution to the last mile problem.

1.1 Research question

The research done for this project was focused on the investigation of CGA-TSIG as a solution to the last
mile problem. This was the only protocol that was in the scope of the project due to time constraints.
The research question has been defined as follows:

Is CGA-TSIG an adequate solution to the last mile problem of DNS in IPv6 networks?

In order to be able to answer this question, the following sub-questions have been defined:

• Does CGA-TSIG provide the necessary security?

• Is the CGA-TSIG specification correct?

1.2 Approach

The CGA-TSIG protocol is a combination of CGA and TSIG, and relies on the security these two protocols
provide. In order to be able to determine if CGA-TSIG provides the necessary security for the last mile,
both CGA and TSIG need therefore be researched. This has been outlined in section 2, where TSIG is
discussed in section 2.1 first, followed by CGA in section 2.2.

At the time of writing, the CGA-TSIG protocol is still in the process of being specified. The current
specification has the status of an IETF individual draft [17] and is not yet complete. The specification
can be improved, however, by verifying the current version of the draft. This could be done with formal
verification methods like modelling, or by implementing a proof of concept. The last option has been
chosen mainly due to the limited time that could be spent to perform a verification, but also because of
the IETF community’s belief in “rough consensus and running code” [11]. By making a proof of concept
it can be shown that the protocol works as intended, but it can also be helpful in revealing any problems
with the specification. Recommendations can be made on any unspecified details as well, for which some
assumptions would need to be made in order to create a working implementation.

Any problems that were encountered in the process can be addressed and improvements can be made to
the draft in order to solve these problems. The implementation can then be updated to reflect the new
improvements and therefore be used to perform another verification, eventually leading to a complete
and sound specification.
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1 INTRODUCTION

In order to be able to implement a proof of concept, the CGA-TSIG protocol has to be researched first
and will be discussed in section 3. The implementation of the proof of concept will then be discussed
in section 4, with the results described in section 4.2. A conclusion is given in section 5, followed by a
short discussion on possible future work in section 6.
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2 BACKGROUND

2 Background

The proposed CGA-TSIG protocol is a combination of the existing TSIG protocol and the CGA method,
both of which will be explained first. The TSIG protocol will be discussed in section 2.1, followed by the
CGA method in section 2.2.

2.1 Transaction Signature (TSIG)

The TSIG protocol [19] provides a means of authenticating DNS messages, like those sent during dynamic
DNS updates and DNS zone transfers, as well as responses from a recursive name server, by using shared-
key encryption. It uses one-way hashing together with a key to create a signature that is sent with a DNS

message. The receiving host can verify the authenticity of the message by validating the signature with
the key it shares with the sending host. The key needs to be distributed over a secure channel which
might only be possible out-of-band. Table 2.1 shows the wire format of a TSIG resource record which
holds the signature and which is added to the message. The meaning of the highlighted fields will be
explained in section 2.1.1.

Field Name Field Size Notes

D
N

S
T

S
IG

R
R

Name variable used for the key identifier in domain name syntax

Type 2 octets must be TSIG

Class 2 octets must be ANY

TTL 4 octets must be 0

RdLen 2 octets number of octets in RDATA

R
D

A
T

A

Algorithm Name variable algorithm name in domain name syntax

Time Signed 6 octets seconds since 1 January 1970 UTC

Fudge 2 octets seconds of error permitted in Time Signed

MAC Size 2 octets number of octets in MAC

MAC variable signature defined by Algorithm Name

Original ID 2 octets original message ID

Error 2 octets expanded RCODE covering TSIG processing

Other Len 2 octets number of octets in Other Data

Other Data variable application-specific other data (optional)

Table 2.1: TSIG resource record wire format, with highlighted TSIG variables

2.1.1 Signature creation

When a host signs a DNS message, it will put the signature in the MAC field which is encapsulated by
the TSIG resource record. The length of the signature depends on the used signature algorithm. Any
TSIG implementation must at least support the HMAC-MD5 algorithm [14], which produces a keyed digest
over the message that is taken as the message signature. However, the input digest components consist
of more than only the message. The use of these components depends on if the message is a request or
response, as well as on TSIG errors.

If a host decides to send a signed request to another host, then the message it wants to send is con-
catenated with the so-called TSIG variables as a preparation for the digest operation. This is the second
digest component. The resulting concatenated block is digested as a single input structure using a key
it shares with the other host, and the output hash will be the message signature. The input structure
looks as follows:
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Component Notes

DNS message (request) without TSIG RR

TSIG variables (request) most of the TSIG RR

The DNS message does not contain the TSIG resource record when fed to the digest algorithm. Neverthe-
less, the TSIG variables make up most of the TSIG resource record, where the variables are mostly values
that are signed in order to increase security. The TSIG variables are highlighted in grey in table 2.1. They
are concatenated in the order as shown to become the TSIG variables input component for the digest
algorithm. Once the signature has been created, it is put inside the MAC field and the TSIG resource
record is then appended to the additional section of the DNS message.

When the other host receives the request and wants to send a signed response, then it uses the same
digest components and an additional third component. This is the MAC field from the request message
(preceded by its MAC size field), which is concatenated to the front of the message that the host wants
to return and the TSIG variables as follows:

Component Notes

MAC (request) the concatenated MAC size and MAC data fields from the request

DNS message (response) without TSIG RR

TSIG variables (response) most of the TSIG RR fields

The inclusion of the request MAC requires the request message to be signed, and so a response must not
be signed if the request was not signed. By including the request MAC, the requesting host can verify
that the response it received is the answer to that particular request.

2.1.2 Signature verification

A host receiving a request (referred to as the server) checks the request for the following TSIG errors in
this order:

1. A key error can occur when the key identifier in the TSIG resource record’s name field is not
recognised. In this case the server returns an error message that is not signed and that thus
contains a TSIG resource record with an empty MAC field. The corresponding TSIG error code is
put in the resource record’s error field. Two hosts can share multiple keys.

2. When the server’s current time deviates too much from the time signed value, then a time error
is returned in a message that is signed with the same key used by the client. The request MAC

digest component is included as is the case with a normal signed response message, unless it does
not validate.

3. If the signature in the MAC field cannot be verified, then this is a signature error. An unsigned
error message (with an empty MAC field) is returned.

If no errors are found, then the server will send a regular signed response message as discussed in the
previous section.

When the client receives the response from the server, it tries to validate the response signature. It does
this by digesting the same components that the server used to create the signature. As a result, the
client must have cached the MAC field before sending the request. If the resulting keyed digest does not
match the signature, then the message is not accepted.

If the signature does validate, then the client will check for errors like the server has done when verifying
the request. First, the key is checked to be the same as the one used for the request. Then the client
checks the time at which the response was signed and generates an error if its own time is outside the
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valid range. The valid range is defined by the time signed value plus and minus the fudge value. The
time check is part of the protocol to counter replay attacks. To prevent these values from being spoofed,
they are signed as part of the TSIG variables component. If the server (which uses the same time check
rule) responded with a time error, then it would have put the perceived client’s time into the time signed
field of the response TSIG resource record and its own timestamp in the other data field instead. This is
done to make it possible for the client to verify a message containing a time error without failing due to
another time error. Finally, the client checks if the server returned a signature error and may retry the
request in that case, possibly with a different key if another one is available.

2.1.3 Security

TSIG provides message authentication and data integrity protection on the link between the host sending
the signed message and the receiving host, depending on the security provided by the used signature
algorithm. As such, it can be used to protect against man-in-the-middle attacks. The provided security
relies on a trust relationship between each pair of hosts. If a validating host assumes that only the
intended remote host (or group of hosts) knows the same key and if that host is trusted, then it can be
assumed that any validated message originated at that host and that its integrity has been preserved
during transit. Any message that does not validate due to a signature error or any other TSIG error
should be regarded as not authentic and therefore be discarded.

TSIG cannot be used to verify the authenticity of data if it did not originate at the host that is being au-
thenticated, as is the case with a recursive name server (which is not the authoritative source). Although
it can be used to secure the last mile, the data that is returned has been fetched from elsewhere by the
recursive name server. In order to verify the data’s authenticity, the relevant authoritative name server
needs to be authenticated which can be done by the recursive name server with methods like DNSSEC.
If the client trusts the recursive name server to be faithful then it can be assumed that the data in any
answer that has been validated with TSIG has been passed on unaltered and that the server did not
falsify any validation results like those from DNSSEC.

Protection against replay attacks has been discussed in the previous section. The fudge value must not
be too small in order to allow for clock skew between the two host, but also not too large to keep the
window in which replay attacks are possible to a minimum length. A time error could therefore mean
that a message was replayed, but it could also occur when the clocks of the two hosts are too much out
of sync. Nevertheless, a message that does not validate due to a time error must never be accepted.

2.1.4 Drawbacks

The TSIG protocol is useful for the authentication of hosts during dynamic DNS updates and zone trans-
fers. However, in case of protecting the last mile it becomes less attractive. Since a recursive name server
usually has relatively many clients that make use of its DNS service, it would need to maintain a shared
key for each of the clients. All these keys, which need to stay secret, somehow have to be delivered
securely at the clients and be configured in their stub resolvers. As a result, the protocol scales poorly.
When using TSIG for dynamic DNS updates or zone transfers, relatively few hosts will need to have a key
configured and it is feasible for a dedicated system administrator to do so. However, securely retrieving
a key and using it to configure a stub resolver could pose a problem to a regular user.

Even after a key has been distributed successfully, the problem resurfaces each time the key is replaced
when it has been compromised or due to other security reasons. If a recursive name server’s complete
key database becomes compromised, then the distribution becomes even more cumbersome since the
problem has to be overcome again for each of its clients.

Another problem is that mobile devices will be assigned to different recursive name servers regularly.
Even though the number of name servers between which a mobile device switches may remain small, it
still means that a new shared key needs to be generated and distributed each time such a device contacts
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a server it has not contacted before. It also does not make much sense for a recursive name server to
authenticate its clients, since it generally accepts anonymous requests. However, a shared key is still
needed for the client to authenticate the server and the client is also required to sign its queries according
to the TSIG specification.

2.2 Cryptographically Generated Addresses (CGA)

The CGA method [6] is primarily used in the SEND protocol [4] as a means of verifying that a message
came from a certain IPv6 address by binding a public key to the address. As the name suggests it does
this by cryptographically generating the IPv6 address, which will be assigned to the host that holds the
associated private key. In the first place, CGA makes it possible to verify that a public key belongs to a
certain host, after which a signed message can be authenticated with that public key by using the key’s
cryptographic algorithm (like RSA [18]).

The second half of the IPv6 address, called the interface identifier, is generated by taking part of the
resulting hash of a cryptographic digest operation on the public key and a few other parameters. One
of these parameters is the first half of the IPv6 address, called the network prefix or subnet prefix, which
is fixed depending on the host’s subnet. The complete CGA parameters data structure that is used as
input to the digest algorithm is shown in table 2.2.

Field Name Field Size Notes

Modifier 16 octets random bit string

Subnet Prefix 8 octets the first 8 octets of the generated IPv6 address

Collision Count 1 octet number of duplicate addresses detected

Public Key variable DER-encoded ASN.1 SubjectPublicKeyInfo structure

E
x
te

n
si

on
F

ie
ld

s Extension 1 Data Type 2 octets

optionalExtension 1 Data Length 2 octets

Extension 1 Data Value variable

[2, ..., n-1]

Extension n Data Type 2 octets

optionalExtension n Data Length 2 octets

Extension n Data Value variable

Table 2.2: CGA parameters data structure

All the CGA parameters are publicly available. The modifier is a random value that is used to add
randomness to the generated address. The rationale behind the use of a randomly generated modifier is
that it would become impossible to link addresses that have been bound to the same public key, thus
improving privacy (although this is not relevant for recursive name servers). Nevertheless, the host can
still be recognised by the public key itself if it is not changed as well. The collision count is a value
that is produced by the CGA generation process as explained in the next section. The public key is
specific to the used public-key algorithm and its length is encoded in the ASN.1 structure itself. The CGA

parameters data structure can be extended with optional extension fields.

2.2.1 CGA generation

The CGA generation algorithm produces an IPv6 address and has not been specified for IPv4. The
generation process involves the creation of two hashes, one of which is used to form the 64-bit interface
identifier of the IPv6 address. Apart from the subnet prefix, the public key, and any extension fields,
the algorithm takes a fourth input value named sec. This is an unsigned three-bit integer with a value
between and including 0 and 7, which can be used to exponentially increase the CGA generation cost in
order to increase security (as will be discussed in section 2.2.4). After the sec value has been chosen, the
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following process is performed to generate the CGA:

1. A random 128-bit modifier is generated.

2. The CGA parameters data structure (a concatenation of its fields) is digested using the SHA-1

algorithm [10], with the subnet prefix and collision count fields set to zero. The 112 leftmost bits
of the resulting hash value are taken as hash2.

3. If the 16×sec leftmost bits of hash2 are not zero, then the modifier is incremented by one and the
process returns to step 2. Otherwise, the process continues with the next step.

4. The 8-bit collision count is initialised to zero.

5. The CGA parameters data structure, with the subnet prefix and collision count values set indeed,
is digested using the SHA-1 algorithm. The 64 leftmost bits of the resulting hash value are taken
as hash1.

6. The interface identifier is formed from hash1 by overwriting its three leftmost bits with the sec
parameter and setting the seventh and eighth bit (denoted as the ‘u’ and ‘g’ bits) to zero.

7. The generated interface identifier is concatenated with the 64-bit subnet prefix to form an IPv6

address, with the subnet prefix to the left and the interface identifier to the right.

8. If required, duplicate address detection is performed to see if the generated address is already in
use. If this is the case, then the collision count is incremented by one and the process returns to
step 5. If a third collision occurs, then the generation process is ceased and an error is reported.

9. If no error occurred then the final CGA parameters data structure will consist of the input subnet
prefix, public key, and extension fields, and the final values for the modifier and collision count.

This process is illustrated in figure 2.1. The resulting cryptographically generated IPv6 address is depicted
in figure 2.2, with the generated interface identifier highlighted in grey. The host holding the private
key that is paired with the digested public key can use that private key to prove that it is associated
with the generated address. This is true even if it has not (yet) been assigned the address. The security
implications thereof, as well as the reason for including the subnet prefix in the digest operation, will be
discussed in section 2.2.4.

2.2.2 CGA verification

When a host receives a signed message with a source IP address that happens to be a cryptographically
generated address (CGA), it can verify the message’s authenticity by first verifying the address’s associated
public key. In SEND [4], the CGA signature and public key are included in its packets’ option fields in
order for the receiving host to be able to perform the verification. With CGA there are usually two
verification stages:

• CGA verification in which the received public key is authenticated by verifying that is belongs
to the host with the source CGA.

• Signature verification in which the received message is authenticated by verifying that it was
signed with the private key that is associated with the received public key. The relevant public-key
algorithm, like RSA, is used to do so.

If the CGA verification succeeds, then it can be assumed that any message for which the signature
verification also succeeds is authentic in the sense that it was signed and sent by the host behind
the CGA, and that the message’s source address cannot have been spoofed. The signature verification
process will be discussed more elaborately in section 2.2.3. For the CGA verification, the following steps
are executed:
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start SHA-1

modifier rand()

subnet prefix 0

collision count 0

public key K

extension fields E

modifier++

(112 bits)

hash2

finish duplicate?no

16*sec ~ 0

SHA-1

false

   sec   {0-7}

subnet prefix = Ptrue

collision count++

yes 

P

(64 bits)

hash1

"ID"

ID

"CGA"

P ID

Figure 2.1: Diagram illustrating the CGA generation process

012 ... 67

subnet prefix sec 00 interface identifier︸ ︷︷ ︸︸ ︷︷ ︸
64 bits 64 bits

Figure 2.2: CGA format

1. The collision count is checked to be 0, 1, or 2. If it has a different value, then the verification fails.

2. The subnet prefix from the CGA parameters data structure is compared with the subnet prefix of
the source address. If they are not equal, then the verification fails.

3. The CGA parameters data structure is digested using the SHA-1 algorithm. The 64 leftmost bits of
the resulting hash value are taken as hash1.

4. The interface identifier of the source address is compared with hash1, ignoring the three leftmost
bits (the sec parameter) and the seventh and eighth bit (the ‘u’ and ‘g’ bits). If any of the remaining
59 bits differ, then the verification fails.

5. The sec parameter is extracted from the interface identifier of the address by reading its three
leftmost bits.

6. The CGA parameters data structure is digested using the SHA-1 algorithm, with the subnet prefix
and collision count fields set to zero. The 112 leftmost bits of the resulting hash value are taken as
hash2.

7. If any of the 16×sec leftmost bits of hash2 are not zero, then the verification fails. Otherwise, the
verification is successful.

If the CGA verification succeeds, then the public key has been authenticated as belonging to the host
holding the cryptographically generated address. The next step would be to authenticate the message
by verifying its signature with the public key, as will be discussed in the next section.
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2.2.3 CGA signatures

According the CGA specification, any message that is to be signed with a CGA-bound key should be
concatenated with a 128-bit type tag before it is digested. This is due to security considerations as will
be explained in section 2.2.4. The type tag is specific to the protocol in which the CGA method is used.
For SEND for example, the type tag is defined to be 0x086F CA5E 10B2 00C9 9C8C E001 6427 7C08. The
specification also prescribes the use of RSA only for the signing operation, specifically the RSASSA-PKCS1-

v1 5 signature algorithm [13], together with the SHA-1 hashing algorithm. However, it would be possible
to use a different public-key algorithm and hashing algorithm.

The CGA signing operation is no different from regular signing operations, except for the prior concate-
nation with the 128-bit type tag. To sign a message, a host should do the following:

1. The 128-bit type tag is concatenated with the message. The type tag is put to the left and the
message to the right.

2. The resulting concatenation is signed with the RSASSA-PKCS1-v1 5 algorithm, using the private
key whose associated public key has been bound to the host’s CGA, and with the SHA-1 hashing
algorithm.

The message is then sent together with the resulting signature and the CGA parameters data structure
from table 2.2 to the intended recipient. The public key in the data structure is the one that was used to
generate the CGA and whose associated private key was used to sign the message. The other parameters
are the output values of the CGA generation procedure as described in section 2.2.1. The receiving host
can verify the message’s signature as follows:

1. The CGA verification is performed as described in section 2.2.2. It needs the sender’s CGA and the
received CGA parameters data structure as input.

2. The relevant protocol’s 128-bit type tag and the received message are concatenated in the same
way as in the signing operation.

3. The signature is verified with the RSASSA-PKCS1-v1 5 algorithm and the SHA-1 hashing algorithm.
The concatenation resulting from the previous step together with the signature and the public key
from the CGA parameters data structure are the input for this operation.

If both the CGA verification and the signature verification succeed, then the message can be assumed to
be authentic.

2.2.4 Security

One property of the CGA method is that anyone is able to bind a self-generated public key to an IPv6

address. This means that anyone will also be able to positively authenticate the public key by verifying
the address. In order for a recipient to know if it can trust a message, even if its signature can be
verified with the authenticated public key, it will need to know if it can trust the host behind the source
address. The recipient will therefore need to authenticate the source address by some means. If this
is not done, then any attacker could spoof the address with another valid CGA and use its own private
key to create valid signatures for forged messages. The CGA specification does not elaborate on how
the initial authentication of a CGA could be done. This is a separate issue that will require additional
research.

If a recipient has authenticated the address and thus cannot be fooled by a different address, then the
only approach left for an attacker is to try to impersonate the CGA. Assuming that it is not possible
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for the attacker to find the original private key, a collision of the hash used for the interface identifier
will therefore have to be found for a public key that is paired with the attacker’s own private key. This
requires the attacker to search for a combination of CGA parameters that yields an interface identifier
equal to that of the target address.

However, the CGA specification makes it hard for an attacker to do so. For example, the duplicate
address detection collision count has a very limited number of valid values. Therefore, it can also hardly
be used in the search for a hash collision. This is important because once an attacker has found a suitable
modifier value in order for hash2 to have enough leading zeros, then the collision count could be used to
exhaustively search for a hash1 without the need to find a new modifier value because the collision count
is not used in generating hash2. It is therefore important that an implementation does not skip step 1
of the verification process as described in section 2.2.2. The collision count is not included in the hash2
generation during the CGA generation process for this reason; it would require a host to find a fitting
hash2 again each time an address collision occurs, which would significantly increase the generation cost
for greater sec values. By limiting the collision count to a small set of values, a denial of service attack
during the duplicate address detection process can also be prevented since the process will be stopped
after three collisions. In general, the limit of three will be sufficient because it is unlikely that three
collisions would occur due to the large address space.

The subnet prefix is included in the digest operation in order to bind it to the generated interface
identifier as well. This way, a recipient can verify that the received public key belongs to that exact
address and not possibly to an address with the same interface identifier, but with a different subnet
prefix. As a side effect, an attacker will need to use a fixed subnet prefix and has less room to play
with the parameters in order to find a hash collision. Since the CGA specification prescribes to use the
subnet prefix from the CGA parameters data structure during CGA verification, it is important not to
skip step 2 of the verification process as described in section 2.2.2. If that check is not done, then an
attacker could try different subnet prefix parameter values indeed for finding a hash collision (similar to
how an unlimited collision count could be exploited) and yet still use the original subnet prefix in the
address. An improvement to the CGA specification could be to omit the subnet prefix from the CGA

parameters data structure and let the verifying host simply extract the subnet prefix from the address
itself (and then insert it into the data structure). This would rule out any implementation errors that
could occur related to this verification step. Also, the subnet prefix is just like the collision count not
included in the hash2 generation and so a host does not need to find a fitting hash2 again if it changes
subnet but still uses the same public key. It can simply use the same modifier value and public key to
generate a new interface identifier for the new subnet prefix.

The CGA specification defines the use of the SHA-1 algorithm to generate the hash that will be used
to form the address’s interface identifier. Of the algorithm’s 160 output bits, only 59 are used (the 64
leftmost bits minus the three bits of the sec parameter and the two ‘u’ and ‘g’ bits). On first sight,
this would make it significantly less costly to find a hash collision since the remaining 101 bits can be
arbitrary, allowing the SHA-1 output to be one of 2101 ≈ 2.5 · 1030 hashes instead of exactly one with an
average cost of O(259) [5]. However, the sec parameter is used to mitigate this weakness by increasing
the number of hash bits that become relevant by generating a second hash, effectively increasing the hash
length. It increases the cost of finding a collision of the 59 bits from hash1 plus the 16×sec bits from
hash2 with a factor of 216×sec to a total average cost of O(259+16×sec). As discussed, an attacker cannot
use arbitrary values for the subnet prefix and collision count to search for a hash collision. Therefore,
the search space is limited to the 2128 possible values of the modifier for a particular public key (but
multiple public keys can be tried as well). The cost of finding a hash collision with the largest possible
sec value (which is 7) is on average O(2171).

The sec value cannot be spoofed since it is part of the address as shown in figure 2.2. If the original sec
value is greater than zero and the attacker would use a sec value equal to zero instead (in which case no
bits would need to be zero), then the resulting address will not match the target address. Even if the
attacker would set the sec value of the resulting address to the original sec value while still using a value
of zero (or any other value smaller than the original value), then the CGA verification will fail because the
verifying host will find too few leading zeros in hash2. Although it will take a relatively large amount of
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time for a legitimate host to generate an address with a greater sec value, it does improve security, and
the generation process might be started relatively early before an old address is planned to be replaced
by a newly generated address.

At the beginning of section 2.2, the randomness of the modifier has been discussed. As said, it does
not improve the privacy of the host if it uses the same public key for the different addresses. However,
this would only be the case if the recipient needs to verify the CGA. In other contexts, where no CGA

verification is needed and the host’s public key is not used, it does improve the privacy by making
addresses bound to the same public key not linkable. It also allows a host to have multiple addresses
that are bound to the same key pair. In case of the last mile, however, the privacy of recursive name
servers is not relevant since their service is publicly available.

As mentioned in section 2.2.3, the message that is to be signed is first concatenated with a 128-bit type
tag. Each type tag is a randomly generated value from the CGA message type name space and must be
uniquely defined for the protocol in which the CGA method is used. The type tag is used to prevent
related-protocol attacks, in which a signed message from one protocol is replayed as a message for another
protocol which may trigger erroneous behaviour. By using a different type tag for each protocol, this kind
of attack can be prevented when one of the two protocols uses its own type tag in the digest operation.
If the message was signed with a different type tag, then the signature verification would fail.

Finally, the strength of the signatures created with the private key whose corresponding public key has
been bound to a CGA depends on the strength of the used algorithms, like RSA and SHA-1, as well as on
the key length. If RSA or SHA-1 are at some point in time considered to be not secure enough, then a
different public-key algorithm or digest algorithm could in principle be used. The security that the CGA

method provides relates to the authentication of the public key, and a public key of a different algorithm
could be bound to an IP address as well.
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3 CGA-TSIG

The proposed CGA-TSIG protocol by Rafiee et al. [17] makes use of the existing TSIG resource record, but
changes the TSIG specification in that it uses public-key cryptography instead of shared-key cryptography,
avoiding the key distribution problem and thus making the protocol scalable. Furthermore, it allows hosts
to authenticate other hosts’ public key by using CGA, which makes it unnecessary for a user to manually
verify the key. Nevertheless, the user will still need to verify the source address as has been discussed
in section 2.2.4. Specifically for the last mile problem, the CGA-TSIG proposal makes it possible to use
TSIG but without the need for stub resolvers to sign requests (which normally is a requirement of TSIG

as mentioned in section 2.1.4). As a result, only the recursive name servers need to have a CGA, while
their clients do not.

CGA-TSIG uses the TSIG resource record’s other data field to send the CGA parameters from table 2.2
along with the DNS message. The complete wire format of a TSIG resource record as specified in the
CGA-TSIG draft is shown in table 3.1. The use of the original TSIG fields has been assumed to be as
defined in the TSIG specification, except for the name field that is normally used to identify the shared
key, and the MAC field that has become superfluous as the CGA-TSIG specification defines a new signature
field. The way these two fields should be handled in case of CGA-TSIG has not been specified in the draft,
nor has the size of the field that encodes the length of the CGA-TSIG data field. These specification flaws,
as well as the meaning of the dotted and highlighted fields, will be discussed in section 4.2.

Of the newly defined fields in the CGA-TSIG data, some require a bit more explanation. Apart from the
algorithm type field which identifies the public-key algorithm used for signing, the field merely denoted
as “type” (not to be confused with TSIG’s second field) identifies the algorithm that was used to generate
the host’s IP address. The only value currently defined is ‘1’ for CGA, but other algorithms similar to
CGA could be used instead. The IP tag, old public key, old signature, and associated length fields are
used to authenticate changes to the host’s IP address or public key. The CGA parameters data structure
from table 2.2 as defined in the CGA specification is included as-is in the other data field, preceded by
a length field indicating its size. The signature field with associated length field is used instead of the
MAC field to hold the signature for the message.

3.1 Signature creation

If a host wants to sign a DNS message and use CGA-TSIG as the algorithm to do so, then it will need
to digest the message (amongst others) with the SHA-1 hashing algorithm (see section 2.2.3) and use
the resulting hash and its private key as input to the signing procedure. This is the private key whose
corresponding public key has been bound to the host’s CGA. Hence, the host will need to have a CGA

generated and assigned, and it will need to cache the associated parameters for later use.

When a DNS message is being signed with CGA-TSIG, a TSIG resource record will be added to the message
containing the signature and CGA parameters. These values will be put in the CGA-TSIG data field per
table 3.1. The CGA-TSIG specification defines a number of steps that a host should follow to generate all
the contents of the CGA-TSIG data field. Any ambiguities and inconsistencies with this procedure will
be discussed in section 4.2. The steps are as follows:

1. The required parameters are obtained from cache. These include the CGA parameters from the
generation process of the host’s CGA as discussed in section 2.2.1. Furthermore, an “old IP address”
is retrieved if available. This is a CGA that has been replaced by a newly generated CGA and is
put in the IP tag field for verification purposes. If an old IP address is not available, then its value
will be set to zero. In this step, the CGA-TSIG specification mentions that the old IP address is
concatenated with the modifier, subnet prefix, public key, and collision count, referring to the CGA

specification for the exact order of the CGA parameters.

2. The signature is generated. The specification of this step starts again with a concatenation pro-
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Field Name Field Size Notes

D
N

S
T

S
IG

R
R

Name variable use not specified

Type 2 octets must be TSIG

Class 2 octets must be ANY

TTL 4 octets must be 0

RdLen 2 octets number of octets in RDATA

R
D

A
T

A

Algorithm Name variable must be CGA-TSIG.

Time Signed 6 octets seconds since 1 January 1970 UTC

Fudge 2 octets seconds of error permitted in Time Signed

MAC Size 2 octets number of octets in MAC

MAC variable use not specified

Original ID 2 octets original message ID

Error 2 octets expanded RCODE covering TSIG processing

Other Len 2 octets number of octets in Other Data

O
th

er
D

a
ta

CGA-TSIG Len not specified number of octets in CGA-TSIG Data

C
G

A
-T

S
IG

D
at

a

Algorithm Type 2 octets public-key cryptography algorithm identifier

Type 2 octets identifier for the algorithm used in SEND

IP Tag 16 octets old IPv6 address if a new one has been generated

Parameters Len 1 octet number of octets in Parameters

P
a
ra

m
et

er
s Modifier 16 octets random bit string

Subnet Prefix 8 octets the first 8 octets of the generated IPv6 address

Collision Count 1 octet number of duplicate addresses detected

Public Key variable DER-encoded ASN.1 SubjectPublicKeyInfo structure

Extension Fields variable optional

Signature Len 1 octet number of octets in Signature

Signature variable the CGA-TSIG signature

Old Public Key Len 1 octet number of octets in Old Public Key

Old Public Key variable old public key if a new one has been created

Old Signature Len 1 octet number of octets in Old Signature

Old Signature variable signature created with the Old Public Key

Table 3.1: CGA-TSIG resource record wire format as specified in the draft, with dotted fields
that form the TSIG variables together with the highlighted fields, where the latter are the only
fields among the digest components

cedure, this time with the components in a different order: modifier, public key, collision count,
subnet prefix, the DNS message, IP tag (old IP address), and time signed field. These fields (that
is, excluding the message itself) are highlighted in grey in table 3.1. The concatenation is signed
with the private key that should have been obtained in the previous step. The signature is then
added to the newly defined signature field.

3. If the host has changed its key pair, then the specification prescribes to “add the old public key and
message, signed by the old private key, to CGA-TSIG data.” In contrast, it additionally prescribes
to sign only the timestamp from the time signed field with the old private key and to add the
resulting signature to the old signature field.

3.2 Signature verification

When a host receives a DNS message signed with CGA-TSIG, which therefore contains a TSIG resource
record with the required parameters per table 3.1, it follows a verification procedure to authenticate the
message. The CGA-TSIG specification includes different verification procedures for different scenarios,
such as when CGA-TSIG is used for zone transfers or for the last mile. Since the scope of this research

14



3 CGA-TSIG

is limited to the last mile, only the related verification process will be discussed. Any ambiguities and
inconsistencies with this procedure will be discussed in section 4.2 as well.

According to the CGA-TSIG specification, the receiving host (or client) should store the acquired public
key when it receives a response from that particular recursive name server for the first time. This would
allow the client to authenticate the name server when it has changed its IP address. When a stub resolver
wants to authenticate the received message, the following steps are executed:

1. The CGA verification procedure is performed as described in section 2.2.2 using the parameters
from the parameters field inside the CGA-TSIG data field. If the verification fails, then the public
key is considered to be invalid for the message’s source IP address and the message is discarded.

2. It is checked if the timestamp from the time signed field adheres to the following equation:

(current system time − x) ≤ time signed ≤ current system time

How the value of x should be determined has not been specified, only that it is a number of minutes.
If the time signed does not fall in the specified range, then the message is considered to have been
replayed and is discarded.

3. The source IP address is verified. If it does not match the known address for the recursive name
server, then the message is discarded.

4. The public key that was authenticated in step 1 is used to verify the message’s signature (obtained
from the signature field inside the CGA-TSIG data field). If the verification fails, then the message
is discarded.

5. The public key is verified in the sense that it is checked if it matches any public key that the client
saved previously. If a match is found, then the verification procedure is finished and the message
is processed. Otherwise, the procedure continues with the next step.

6. The old public key is verified. If its field length is zero or if it does not match a public key in the
client’s storage, then the message is discarded. Otherwise, the next step is executed.

7. The old signature is verified with the old public key. If the verification succeeds, then “the new
public key should be replaced with the old public key” for this name server in the client’s storage
and the message is processed. Otherwise, the message is discarded.

3.3 Advantage over TSIG

The advantage of CGA-TSIG compared to the original TSIG specification is that it uses public-key cryp-
tography instead of shared-key cryptography. As a result, the key distribution problem as discussed in
section 2.1.4 is avoided since the public keys can be sent out in the open, which makes the protocol
scalable. It is therefore suitable for protecting the last mile, where there are many clients that contact
a particular recursive name server. CGA makes it possible to automatically authenticate the received
public key, where the authentication of a shared key as used in the original TSIG specification requires
more effort.

Nevertheless, the problem shifts from exchanging and authenticating the key to exchanging and authen-
ticating the IP address. As discussed in section 2.2.4, the CGA has to be authenticated by some means
or it could happen that an attacker inserts its own address instead. The IP addresses of recursive name
servers are usually automatically configured by methods like DHCP [8][9], but this always happens in the
background as is not authenticated. A user is never prompted with the configured addresses and asked
to verify them. Regular users who are not aware of what is happening in the background will probably
also not try to verify that the addresses belong to their ISP, for example. In order to take away this
problem and make the authentication of the IP addresses effortless, this authentication should somehow
be automated. However, the problem of the initial IP address configuration is not in the scope of this
research project.
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4 Proof of concept

As a part of the research project, a proof of concept has been implemented in order to verify the CGA-

TSIG specification with regard to the last mile scenario. As a result, only the signature verification
procedure relevant to the last mile scenario (as described in section 3.2) has been implemented and
tested. By implementing CGA-TSIG, an independent verification of the specification can be performed
and most issues related to using CGA-TSIG for the last mile are likely to be found. No other independent
implementation was known to be openly available at the time of writing.

4.1 Implementation

The proof of concept, written in C, is based on the ldns library1 (unreleased version 1.6.17) from NLnet
Labs. The library already contains TSIG support, which has been extended to support the CGA-TSIG

algorithm limited to the last mile scenario. The verification steps related to the authentication of a
new public key (steps 5, 6, and 7 as described in section 3.2) have been left out because it is not clear
how a client should have obtained the server’s new IP address (as will be discussed more elaborately in
section 4.2.3) and due to time constraints. The code for the proof of concept can be found in the online
repository2 of NLnet Labs and the file differences can be found in appendix A.

In order to be able to test with cryptographically generated addresses, a small tool has also been created
which uses the Scapy6 library (now merged with Scapy3) to generate a CGA for a given public key. This
implementation, which has been written in Python, can also be found in the repository of NLnet Labs
(in the “cga-gen” directory) and in appendix B.

In the following sections, the issues that have been found in the course of the research project (including
during the implementation of the proof of concept) will be discussed. The general implementation results
will be discussed afterwards.

4.2 Results

The CGA-TSIG proposal [17] as specified contains a number of ambiguities and inconsistencies. Some of
these have been found during the implementation of the proof of concept. Others came to light when
the protocol was researched while preparing for the implementation, several of which have already been
mentioned in the previous sections. Each of the found ambiguities and inconsistencies will be discussed
in the following sections, where they are grouped by issues related to the CGA-TIG resource record in
section 4.2.1, the signature creation procedure in section 4.2.2, and the signature verification procedure
in section 4.2.3. The general results of the implementation of the proof of concept will then be discussed
in section 4.2.4.

4.2.1 CGA-TSIG resource record issues

As shown in table 3.1, several details are missing regarding the format of the TSIG resource record as
used by CGA-TSIG. The author of the CGA-TSIG draft has been contacted to ask for her vision on filling
in these details, which has been used as a guideline while implementing the proof of concept.

1http://www.nlnetlabs.nl/projects/ldns/
2http://git.nlnetlabs.nl/ldns/?h=cga-tsig
3http://www.secdev.org/projects/scapy/
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Name field

One detail relates to the name field, which is normally used for identifying the symmetric key that should
be used. In case of CGA-TSIG, there is no need to identify a key since a public key is being used instead
which is even sent with the message. Nevertheless, it has not been specified how the name field should
be handled. The author replied with the statement that it can be set to a random value. This does
not, however, seem to have any advantage over simply using the shortest possible fully qualified domain
name, which is a single dot (“.”). On the contrary, if the field would be set to a random value of any
length larger than that of a single dot, then the packet would become unnecessarily large since the field
is not relevant at all. By setting the field to a single dot, the largest possible amount of space is saved.

MAC field and signature field

The use of the MAC field has also not been specified, although it might seem logical to use it for the CGA-

TSIG signature. According to the contacted author, however, it should not be used when the signature
is created with a key that is not a shared secret as is the case with CGA-TSIG. For this reason, a separate
signature field has been defined in the other data field to accommodate for the CGA-TSIG signature.

In her reply, the author states that the MAC field should be left empty, with the MAC size field set to
zero. However, the TSIG specification defines the use of MACs based on a secret key, and a private key
is also a secret key. If it should be interpreted as a shared secret key on the other hand, then the TSIG

specification could easily be updated by additionally allowing the use of asymmetric keys. This would
limit the number of exceptions required at occurrences of the MAC field in the TSIG specification to a
minimum, preventing numerous redirections to the signature field where the MAC field would normally
have been accessed. After all, both fields serve the same purpose of carrying a signature from one host
to the other. Some exceptions are nevertheless inescapable for CGA-TSIG regarding the way in which the
field holding the signature is handled. These will be further discussed in section 4.2.2.

TSIG’s other data field

CGA-TSIG uses the other data field of the TSIG resource record to send its data to the intended recipient,
like the CGA parameters that the recipient will need in order to be able to do the CGA verification and
message authentication. However, the original TSIG specification uses the other data field as a holder for
a timestamp in case of a time error, which has been discussed in section 2.1.2. It does not seem to take
the use of the other data field by new signature algorithms like CGA-TSIG into account, since it makes
no notion of it and specifies that the other data length must be set to ‘6’ (which is the length of the
timestamp).

It also does not specify how any extra fields inside the other data field should be formatted, nor does the
CGA-TSIG specification. Since a message containing a time error should also be signed according to the
TSIG specification, it could happen that the other data field is needed for both the timestamp and the
CGA-TSIG data although it is not clear how the two should be combined. A solution would be to reserve
the first 6 octets in the other data field for a timestamp in case of a time error, so that it would be clear
for an implementation adhering to TSIG that it will find a timestamp at that location. The CGA-TSIG

data can then be placed right after the timestamp. If the TSIG error field indicates no time error, then
this would not be required and the CGA-TSIG data and its length field could occupy the first 6 octets as
usual. If CGA-TSIG is used for the last mile, however, then the double use of the other data field would
never occur. This will be further discussed in section 4.2.2.

Sizes of the length-encoding fields

CGA-TSIG defines the CGA-TSIG data field inside the other data field to hold its data. Since this field is
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of variable length, it is preceded by the CGA-TSIG length field which is used to encode the length of the
CGA-TSIG data. However, the size of this length field itself has not been specified, although it should be
fixed in order for an implementation to know how many octets belong to that field. According to the
contacted author, it should be specified as a 1-octet sized field.

During the implementation of the proof of concept, however, some issues arose related to the size of the
length fields defined by the CGA-TSIG specification. Apart from the CGA-TSIG length field, the other
length fields inside the CGA-TSIG data field have also been defined as fields with a size of 1 octet. This
allows for an encoding of up to 255 octets. However, a 2,048-bit public key would already require a
field size of 2,048

8 = 256 octets, in which case the field that encodes the length of the parameters data
structure comes short. Likewise, the old public key length field cannot encode a key of the same size or
greater. As a result, the total length of the CGA-TSIG data cannot be encoded in the CGA-TSIG length
field either. During tests of the implementation, no attention was paid to the length of the used public
key. It turned out to be a 2,048-bit key, which made the length fields overflow and caused the signature
verification to fail. It is strongly recommended to use 2 octets for all the defined length fields. This
would allow an encoding of at most 65,535 octets (a factor of already 65,535

255 = 257 greater), which is
more than sufficient for the current purpose. It would be no use increase it to 3 octets or more, since
values greater than 65,535 cannot be encoded in the other data length field (which is also 2 octets long).

Since the CGA parameters data structure is added to the resource record as-is, there is only one length
field (the parameters length field) indicating the size of the entire data structure and there are no separate
length fields for the variably sized public key and extension fields. This makes it possible to pass the entire
data structure to the CGA verification function with minimum effort. However, most of the parameters
still need to be parsed separately. The public key, for example, is also needed for the signature verification.
During the implementation of the proof of concept, it became clear that the length of the public key
must be extracted from the ASN.1 encoding itself before being able to parse it. This makes the parser
function unnecessarily complex in that it will need to be able to do more than only parsing simple length
fields in order to parse the particular data field. Furthermore, the length of the remaining extension
fields has to be deduced from the other parameters’ lengths by subtracting them from the value in the
parameters length field. It would be easier to add a preceding length field in front of both fields in favour
of the parameters length field. Since the parameters need to be parsed separately anyway, it would be no
problem to concatenate them before proceeding with the CGA verification operation. On the other hand,
however, it might be best to maintain the parameters field with its length field to accommodate for the
parameters of alternatives to the CGA method, but additional length fields for variably sized parameters
would still come in handy.

Old public key field

The format of the public key inside the CGA parameters data structure has been defined to be a DER-
encoded ASN.1 structure according to the CGA specification. However, the format of CGA-TSIG’s old
public key has not been defined. It might be assumed to be a DER-encoded ASN.1 structure analogous
to the format of the public key in the parameters field, but this must be clearly specified in order for
implementations to know how to parse it.

Algorithm type field

The data type of the algorithm type field conflicts with the related notes, which describes its contents
as the “name of the algorithm” with RSA as the default. It refers to the CGA specification, where the
numerical string (in domain name syntax) 1.2.840.113549.1.1.1 is the only identifier that is mentioned
with respect to RSA. However, the data type is defined as a 16-bit unsigned integer, instead of a variable
domain name type. According to the contacted author, the field should indeed contain an integer, where
the value of ‘0’ corresponds to RSA. This definition has only been mentioned in the draft’s appendix and
not in the main specification text. The identifier ‘0’ would need to be registered with IANA. However,
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the numerical string mentioned earlier has already been registered and could be used instead. Moreover,
the identifier 1.2.840.113549.1.1.5 might even be more suitable [12], since it combines RSA with the
digest algorithm SHA-1 (which is used in standard CGA but for which no separate identifier field has been
defined). This way, both the public-key algorithm and the digest algorithm can be specified in one field.

4.2.2 Signature creation issues

According to the original TSIG specification [19], a host that wants to sign a DNS message with TSIG has to
concatenate the message with the TSIG variables prior to the signing operation. This has been discussed
in section 2.1.1. However, the CGA-TSIG signature creation procedure as described in section 3.1 does
not fully comply with the TSIG specification. It does also not completely adhere to the CGA specification
as described in section 2.2.3.

TSIG variables inclusion

The TSIG variables are highlighted in grey in table 2.1. Since the other data field belongs to the TSIG

variables, all the fields inside the other data field as defined by CGA-TSIG should be included in the digest
operation as well. However, the CGA-TSIG specification only includes a subset of the TSIG variables in
the digest operation. The fields that form this subset are highlighted in table 3.1, where the remaining
fields that belong to the TSIG variables are marked with a dotted background. If CGA-TSIG would adhere
to the TSIG specification by including the dotted fields as well, then the rise of compatibility issues will
be less likely. Nevertheless, an exception has to be defined for the signature field and its length field,
which cannot be included since their values will not be known before the digest operation. The same
might apply to the old signature field, which will be discussed later.

Also, it does not suffice to digest the time signed field but not the fudge field with regard to preventing
replay attacks. By spoofing the fudge field of an old intercepted message and setting it to a sufficiently
large value, a signed but possibly outdated message can be replayed and be accepted. If the message
contains an answer to a query, for example, then the returned IP address could in the meantime have
been changed for the queried domain name. The client would then be directed to the old IP address,
which at the time might be in use by a different host. This is the reason why it is part of the TSIG

variables as defined by the TSIG specification and an example of why it would be wise to follow that
specification.

TSIG variables order

The order in which the highlighted fields are to be concatenated is also not strictly defined. Both step 1
and step 2 of the signature creation process as described in section 3.1 make mention of a concatenation
procedure. In step 1, the order in which the fields are mentioned for this procedure are:

• old IP address (the IP tag field)

• modifier

• subnet prefix

• public key

• collision count

Note that the time signed field is not included. It is however included in step 2, where the fields are
mentioned in the following order:

• modifier

• public key
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• collision count

• subnet prefix

• DNS message

• IP tag

• time signed

Here, even the message is put in between the TSIG variables, which is contrary to the TSIG specification.
The CGA-TSIG specification also says that all the CGA parameters are to be included, but makes no
mention of the extension fields in contrast to the other parameters. Additionally, the specification fails
to mention that the collision count, the subnet prefix, and the extension fields should have been put in
the cache that is being accessed in step 1. It does mention that (the location of) the private key should
have been cached, but it is not among the parameters that are said to be obtained in step 1. Yet, the
private key is obviously required for the signing procedure and is referred to in step 2.

To prevent any confusion and ambiguous interpretations, the concatenation procedure should be defined
in only one of the steps and the order must be strictly specified. Since the TSIG specification concatenates
the TSIG variables in the order in which they sit inside the resource record, CGA-TSIG should adhere to
that order and include all the dotted fields in table 3.1 too (except for the signature fields). The TSIG

variables should then be concatenated with the DSN message, where the message precedes the variables.

MAC field and signature field

The TSIG specification prescribes that a response must only be signed if the request was signed, and
that the MAC field from the request must be concatenated with the DNS message and TSIG variables
as described in section 2.1.1. However, the MAC field is not used in CGA-TSIG. By including the MAC

field in the digest operation, a requesting host can verify that the received response is an answer to the
particular request it sent. For CGA-TSIG, the signature field (together with its length field) could be
used instead. It would then need to update the original TSIG specification by defining an additional
check of the algorithm name in order to determine if the MAC field or the signature field should be used.
However, it may be better to simply use the MAC field as has been discussed in section 4.2.1. The TSIG

specification also defines that the responder should use the same symmetric key as the one used by the
requester, but for CGA-TSIG this is irrelevant since asymmetric keys are used and each host signs with
its own private key. This would also require an update to the TSIG specification.

Last mile signing procedure

In case of a stub resolver sending a query to a recursive name server, the query does not need to be signed
since the recursive name server accepts anonymous requests. Therefore, the CGA-TSIG specification states
that the CGA-TSIG data field does not need to be included in the query’s TSIG resource record. This would
however require an exception to be added the TSIG specification in that unsigned messages for which
CGA-TSIG verification is requested should be accepted, provided that the receiver has been configured
as a recursive name server that accepts anonymous requests. Additionally, it should be specified that
no MAC or signature field must be added to the response’s digest components. Adding either would not
make sense since the MAC field is always empty and since no signature field is added to the query.

The CGA-TSIG specification does not clearly define what a stub resolver should do in order to tell the
recursive name server to sign the response with CGA-TSIG. After inquiring the author, it became clear
that the stub can do so by setting the algorithm name to “CGA-TSIG.” and the CGA-TSIG data length to
zero. No CGA-TSIG data needs to be included because the client does not sign the query. The data is only
relevant in case of a signed message, where the receiving host will need it in order to verify the public
key and the message. In case of the last mile, it is sufficient for the client to merely set the algorithm
name in order to signal the recursive name server to sign the response with CGA-TSIG.
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It would also not make sense for a recursive name server to check the time signed value of an anonymous
request, since it would not have been signed. This field (and the fudge field) can therefore be set to zero
by the stub resolver. This has not been defined in the CGA-TSIG specification, although it should define
an update to the TSIG specification regarding anonymous requests. As a result, a time error would also
never occur when replying to anonymous queries and no timestamp would need to be put in the other
data field together with the CGA-TSIG data (as discussed in section 4.2.1).

CGA type tag and the other digest components

To return to step 2 of the described signature creation procedure, the operation after digesting the DNS

message and the TSIG variables is to sign the message using the resulting hash. In accordance to the CGA

specification, this is done with the RSA algorithm by default. However, no mention is made of a 128-bit
type tag which is a digest component required by the CGA specification. As described in section 2.2.3,
the message that is to be signed should be concatenated with a type tag that is unique for the protocol
that uses CGA verification. In this case, the protocol is CGA-TSIG and the “message” would be the
concatenation of the DNS message with the TSIG variables, and possibly the signature field (or otherwise
MAC field) from the request. The complete concatenated block would then look as follows:

Component Notes

128-bit CGA type tag should be randomly generated and assigned to CGA-TSIG

[signature (request)]
the concatenated signature length and signature data fields from the request

[only included in a response to a signed request, not applicable to the last mile]

DNS message without TSIG RR

TSIG variables
the highlighted and dotted fields from table 3.1 in order of appearance,

except for the signature fields

This block should be digested using the SHA-1 algorithm in accordance to the CGA specification, and be
used as input to the signing operation, using RSA by default. The resulting signature is then put in the
CGA-TSIG signature field (or otherwise the MAC field).

Old public key and old signature

Like the first two steps of the signature creation process, step 3 is not clearly defined either. This step
is done if the host created a new key pair and the output is a signature that is to be placed in the old
signature field. According to this step the old public key and the message, signed with the old private
key, are added to the CGA-TSIG data. This ambiguous definition should probably be interpreted in the
sense that the old public key is added to the CGA-TSIG data, and that the signature (rather than the
message itself) resulting from the signing procedure with the message and the old private key as input
is added to the CGA-TSIG data too.

However, this is subsequently contradicted by stating that the time signed value is solely signed with
the old private key and that the resulting signature is put in the old signature field. None of the two
definitions specify that the new public key must be signed with the old private key. Nevertheless, it
should be in order to be able to authenticate the new public key, which is why the old public key is
included in the CGA-TSIG data in the first place.

Instead of signing only the message or time signed value with the old private key, it would be logical to
use the same input data structure as is used for the main signing operation with the new private key.
Since this data structure will need to be constructed anyway, it can easily be used for creating both the
old and the new signature. The data structure also contains the new public key in the parameters field,
which belongs to the TSIG variables and thus to the digest components. As a result, the old signature
field must then also be excluded from the TSIG variables that are being digested since the signature
cannot be known beforehand. By including the new public key in the digest operation, the old public
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key can be used to authenticate the new public key and therefore the new cryptographically generated
address as well if the CGA verification succeeds (which is also newly generated because the new public
key would need to have been bound to an address). The handling of the old public key and old signature
fields will be further discussed in section 4.2.3.

4.2.3 Signature verification issues

As is the case with the signature creation procedure, the signature verification procedure of CGA-TSIG

can be improved. This procedure has been described in section 3.2.

Time signed check

CGA-TSIG defines a time signed check as described in step 2 of the verification process that is different
from the definition in the original TSIG specification. Since there seems to be no reason for CGA-TSIG to
use a different procedure, there is also no reason for not using the original procedure and creating yet
another exception for CGA-TSIG. For comparison, TSIG defines the time signed check as follows:

(time signed − fudge) ≤ current system time ≤ (time signed + fudge)

If the current system time falls inside this range, then the time signed check succeeds.

The value of x in the definition described in step 2 could be interpreted to be similar to the fudge
value. However, it is not clear why the fudge value itself is not being used since it has been specifically
introduced in the TSIG specification for this purpose. It is also not clear if the sender or the recipient
of the signed message should determine the value of x. With regard to the TSIG specification, it is clear
that the fudge value is set by the sender, which signs it as a part of the TSIG variables to prevent it from
being spoofed and ultimately to keep the risk of replay attacks to an acceptable minimum. Also, the
fudge value is a number of seconds and x would be a number of minutes. The time signed value is also
a number of seconds, so it would be logical for x to be a number of seconds as well. Nevertheless, the
fudge value should be used instead.

The definition in step 2 takes into account that the recipient’s current system time could be x minutes
ahead of the server’s time (including transmission time) as given by the time signed value. However, it
does not take into account that it could lag behind, which is another possibility. Therefore, if the time
signed value is greater than the recipient’s current system time, even if it would not be greater than the
current system time plus x minutes, then the time signed check would fail. In order to prevent this kind
of issues, it is best to follow the original TSIG specification where possible (like with the time signed
check definition) and to only update it where necessary.

Old public key and old signature

During the CGA-TSIG verification process, a stub resolver verifies the public key it received in step 5 as
described in section 3.2. It was mentioned that the client should have saved the public key it acquired
from the recursive name server when it received an answer for the first time. If the public key matches
the key that was saved, then the message will be processed. Otherwise, it is checked if the old public
key matches.

Unfortunately, this approach could be problematic. If the recursive name server would have generated a
new key pair, then consequently it would also have generated a new CGA to which the new public key is
bound. However, the CGA-TSIG specification does not elaborate on how the client should know that the
server changed its keys and what its new IP address is. If the client does not know, then it will try to
contact the server at its old address. If the server released its lease on that address right after generating
the new CGA, then the client is dead in the water. It would therefore be inevitable for the server to hold
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on to the old address for a certain period of time to allow its clients to still contact the server, while
asking them to update the address when they do so. The new address could be put in the IP tag field
(contrary to the definition that it can only hold an old IP address), which is signed since it is part of
the TSIG variables. This way, the client can authenticate the new address and use it the next time it
contacts the server, at which point it will receive the new public key. If a client misses the transition
period in which the server holds on to both addresses, however, then it would still be unable to retrieve
the new address.

On the other hand, if the client is believed to have received an update of the server’s IP address via a
method like DHCP [8][9], then the server will not need to hold on to its old address and no transition
period is required. It would then indeed be necessary to send the old public key along in order for the
client to be able to authenticate the new public key and address. When the client contacts the server at
the new address, it will receive the new public key and find that it does not match any key it saved earlier.
It will then check if the old public key matches a saved key as described in step 6 of the verification
process. If this is the case, then the signature in the old signature field will be verified in step 7 using
the old public key and whatever fields were used in the digest operation. These input fields should have
been defined in step 3 of the signature creation operation, as described in section 3.1. However, this
definition is ambiguous as has been discussed in section 4.2.2.

Nevertheless, in applications other than the last mile (like zone transfers) it cannot be assumed that the
hosts will receive IP address updates via methods similar to DHCP. Each host that might expect requests
from another host will need to hold on to its old IP address if it generated a new one for a period of
time, and use the IP tag field as described earlier. However, a host with a new CGA that wants to send
a request can do so by simply using its new address as the source address and sending the old public
key with an associated old signature along as described. Nonetheless, if it also expects requests then it
should still hold on to its old address until all hosts it knows have been notified of the new address. It
would clarify the rationale behind the way the new public key is authenticated using the old public key
if the CGA-TSIG specification would elaborate on how a new IP address is assumed to be obtained in the
different scenarios.

The verification process defined for the last mile scenario apparently assumes that the new IP address
is propagated via an automated method like DHCP. If the new address has been bound to the same
public key as the one that was also bound to the old address, then the key will be recognised and the
verification process is finished after step 5. If a new public key was used, then the process continues
with step 6. Assuming that the new public key replaces the old public key of a particular recursive
name server and that the new CGA is thus assigned to that same server, then the old public key can be
used to authenticate this change. However, it is possible that the new CGA is an address of a different
server that does not have an old public key. The server would therefore leave the old public key field
empty and step 6 would fail, in which case the message would be discarded. Nevertheless, this server
could still be legitimate and it would be better to treat the new CGA as any other initially configured
CGA by attempting to authenticate the CGA, instead of discarding the message right away. Also, step 7
defines that the new public key should be replaced with the old public key if the verification of the old
signature succeeds, but this should be corrected by switching the words “new” and “old” in order for
this definition to make sense.

Order of the verification steps

During the implementation of the proof of concept, the signature verification steps were put in a different
order than defined. By switching step 1 and step 3 (as described in section 3.2), the relatively cheap
operations of checking if the source IP address matches the address to which the stub resolver dispatched
its query and the time signed check can be done before the relatively expensive CGA verification. This
way, less effort is required by the recipient if the IP address check or the time signed check fails, reducing
the impact of denial of service attacks.
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4.2.4 General proof of concept results

The proof of concept has been based on the CGA-TSIG specification with the last mile scenario in mind,
as well as on the replies from the author of the CGA-TSIG specification to the inquiries. As a result, a
working implementation has been created even though many ambiguities and inconsistencies have been
identified while implementing the proof of concept, as has been described in the previous sections. The
implementation deviates from the specification with regard to the size of the length-encoding fields, for
which 2 octets have been used instead of 1 as discussed in section 4.2.1. It does follow the CGA-TSIG

specification regarding the TSIG variables and other digest components (as discussed in section 4.2.2),
using only the highlighted fields from table 3.1 and not the dotted fields. Nevertheless, the code has been
written in such a way that the remaining TSIG variables can easily be added and it makes no difference
if these are included or not in order to demonstrate that the CGA-TSIG implementation works.

Additionally, a bug in the ldns library was found while implementing the proof of concept. This bug
relates to the SHA-1 implementation of the library, which caused the input data structure to be modified.
Since the same data structure was used to create both hash1 and hash2 subsequently, the first sec times
two octets of hash2 were therefore not equal to zero although they should have been because a sec value
greater than 0 was used at the time. When the SHA-1 function of OpenSSL was used thereafter instead,
the CGA verification did succeed. Evidently, the bug manifested itself as soon as the sec value was raised
from 0 to 1, because only then any bits of hash2 became relevant. In the meantime, a patch has been
implemented by the ldns team.

The main additions to the existing TSIG code of the ldns library include the public-key signature genera-
tion and verification support (complementing the existing symmetric-key implementation), as well as the
CGA verification function. All additions can be found in appendix A. In order to generate CGAs, a third-
party implementation of the CGA generation procedure was used, which made testing the implemented
CGA verification function more reliable. No errors were found with regard to this implementation. The
code of the created tool that was used to call the third-party CGA generation function can be found in
appendix B.

24



5 CONCLUSION

5 Conclusion

Since the CGA-TSIG specification still has the status of a draft, it is understandable that there are a
number of issues that will need some attention. Nevertheless, the draft in its current form is far from
close to a final specification. There is a large number of problems that were encountered while researching
and implementing the protocol, which have been discussed in section 4.2 and for which solutions have
been suggested.

The main issue that has been found is that the current CGA-TSIG specification does not adhere to the
original TSIG specification very well. This makes the protocol look like a completely new specification,
rather than an extension to TSIG. However, it was a logical choice to specify CGA-TSIG as an extension to
TSIG, since it already provides an existing framework for signing DNS messages. Nevertheless, CGA-TSIG

should follow the TSIG specification more strictly so that minimum effort is required to extend existing
TSIG implementations. For example, all the TSIG variables should be included (but an exception has to
be made for the signature fields), and there is no need to unnecessarily update the TSIG specification as
is the case with the time signed check.

Since CGA-TSIG is an algorithm type for the TSIG protocol, it provides DNS message authentication and
data integrity on the link between two hosts. The strength of this security depends on the security
provided by the used algorithm type, which is CGA-TSIG in this case. By default, CGA-TSIG uses RSA

to sign DNS messages. However, CGA can be seen as a framework similar to TSIG in the sense that a
different signature algorithm could be chosen. As a result, the security of CGA-TSIG depends on the
chosen public-key algorithm and RSA could be replaced as soon as it is deemed to be not secure enough.
Since CGA-TSIG uses a public-key algorithm for signing, it can be made as secure as the chosen public-key
algorithm. Additionally, the key length can be increased to improve security.

Nevertheless, CGA has another security aspect in the sense that it cryptographically binds a public key
to an IP address. By binding it to an address, the public key can be authenticated as belonging to the
host behind the IP address. The strength of this bond must be great enough to prevent attackers from
impersonating a host behind a certain CGA. This can be done by using a high sec value, which can be
increased depending on the required strength in order to provide the required security.

By using public-key cryptography, CGA-TSIG avoids the key distribution problem that exists with regular
(shared-key) TSIG which makes it suitable for the last mile, where there are many clients that contact a
recursive name server. The clients can simply request the server’s public key and verify that messages
signed with the corresponding private key come from the server and not from a different host. To be able
to do so, the server will need to have a CGA to which the public key has been bound and which is used
to receive requests from clients. Since the recursive name server accepts anonymous requests, the clients
do not need to be authenticated and so they do not need to have a key pair and a CGA themselves. This
keeps the burden of generating CGA’s (with the associated sec values) at the side of the servers.

After implementing the proof of concept, it was found that CGA-TSIG can work as believed to be intended.
However, CGA only works on IPv6 networks and it might take a while before IPv6 is in widespread use.
As a result, it might also take a while before CGA-TSIG becomes useful to the general public as a solution
to the last mile problem. Nevertheless, there is still the problem of the initial IP address authentication.
In order for a client to be certain that it received the CGA of a trusted recursive name server, the address
would somehow need to be verified. The initial CGA authentication would need to be automated since
the average user is not likely to be aware of the importance of verifying the address and would therefore
not do so manually. Solutions to this problem might exist, but research to these solutions was out of the
scope of the project. Nevertheless, it would be useful for the CGA-TSIG specification to elaborate on how
this initial CGA authentication can be done since it is an important link in the chain of security that
CGA-TSIG provides. All in all, however, CGA-TSIG could prove to be a viable solution to the last mile
problem of DNS once the use of IPv6 is common and an automated CGA authentication method has been
outlined.
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6 Future work

Automated solutions to the initial CGA authentication might exist. However, research to these solutions
was out of the scope of this project. Future research could be done on possible solutions in order to be
able to automatically authenticate a recursive name server’s CGA, which is essential to the security that
CGA-TSIG provides with regard to the last mile problem.

Future research could also be done regarding the impact on the performance of signing and verifying
each DNS message with public-key cryptography, as used by CGA-TSIG. This could best be done when the
CGA-TSIG specification is complete. It could also be investigated how the protocol performs compared
to for example DNSCurve, which uses public-key cryptography to encrypt the complete message.
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APPENDICES

Appendices

The code in appendix A shows the implementation of the proof of concept based on the ldns library.

The tool in appendix B was created in order to be able to generated CGA’s by calling the Scapy6 library.

Appendix A Proof of concept implementation

tsig.c (additions and deletions)

5d4
+ ∗ and CGA−TSIG [ draft−r a f i e e−intarea−cga−t s i g −06]
123d121
+ ∗ r e s u l t l e n = 0 ; // = b u g f i x ?
276 ,1050 d273
+ /∗∗
+ ∗ r e t u r n s a new i n i t i a l i z e d l d n s c g a r d f s s t r u c t u r e .
+ ∗ \param [ o u t ] r d f s t h e o u t p u t s t r u c t u r e ( w i l l b e a l l o c a t e d )
+ ∗ \ r e t u r n s t a t u s (OK i f s u c c e s s )
+ ∗/
+ stat ic l d n s s t a t u s
+ ldns cga rd f s new ( l d n s c g a r d f s ∗∗ r d f s )
+ {
+ i f ( ! r d f s ) {
+ return LDNS STATUS NULL;
+ }
+
+ ∗ r d f s = LDNS MALLOC( l dn s c g a r d f s ) ;
+
+ i f ( !∗ r d f s ) {
+ return LDNS STATUS MEM ERR;
+ }
+
+ /∗ i n i t i a l i z e ∗/
+ (∗ r d f s )−>algo name = NULL;
+ (∗ r d f s )−>type = NULL;
+ (∗ r d f s )−>i p t ag = NULL;
+ (∗ r d f s )−>modi f i e r = NULL;
+ (∗ r d f s )−>p r e f i x = NULL;
+ (∗ r d f s )−>c o l l c o un t = NULL;
+ (∗ r d f s )−>pub key = NULL;
+ (∗ r d f s )−>e x t f i e l d s = NULL;
+ (∗ r d f s )−>s i g = NULL;
+ (∗ r d f s )−>old pub key = NULL;
+ (∗ r d f s )−>o l d s i g = NULL;
+
+ return LDNS STATUS OK;
+ }
+
+
+ /∗∗
+ ∗ f r e e s t h e l d n s c g a r d f s s t r u c t u r e and i t s c ompon e n t s .
+ ∗ \param [ i n ] r d f s p o i n t e r t o t h e l d n s c g a r d f s s t r u c t u r e
+ ∗/
+ stat ic void
+ ldn s c g a r d f s d e e p f r e e ( l d n s c g a r d f s ∗ r d f s )
+ {
+ i f ( ! r d f s ) {
+ return ;
+ }
+
+ ldn s r d f d e e p f r e e ( rd f s−>algo name ) ;
+ l d n s r d f d e e p f r e e ( rd f s−>type ) ;
+ l d n s r d f d e e p f r e e ( rd f s−>i p t ag ) ;
+ l d n s r d f d e e p f r e e ( rd f s−>modi f i e r ) ;
+ l d n s r d f d e e p f r e e ( rd f s−>p r e f i x ) ;
+ l d n s r d f d e e p f r e e ( rd f s−>c o l l c o un t ) ;
+ l d n s r d f d e e p f r e e ( rd f s−>pub key ) ;
+ l d n s r d f d e e p f r e e ( rd f s−>e x t f i e l d s ) ;
+ l d n s r d f d e e p f r e e ( rd f s−>s i g ) ;
+ l d n s r d f d e e p f r e e ( rd f s−>old pub key ) ;
+ l d n s r d f d e e p f r e e ( rd f s−>o l d s i g ) ;
+ LDNS FREE( rd f s ) ;
+ }
+
+ /∗∗
+ ∗ c h e c k s i f a number o f b y t e s a r e a v a i l a b l e .
+ ∗ \param [ i n ] p o s t h e c u r r e n t p o s i t i o n
+ ∗ \param [ i n ] c o u n t t h e number o f b y t e s
+ ∗ \param [ i n ] s i z e t h e s i z e o f t h e b u f f e r
+ ∗ \ r e t u r n b o o l e a n i n t i n d i c a t i n g i f i t i s a v a i l a b l e
+ ∗/
+ stat ic int
+ ldn s c g a a v a i l a b l e ( s i z e t pos , i n t 3 2 t count , u in t16 t s i z e )
+ {
+ i f ( count < 0) {
+ return 0 ;
+ }
+
+ return ( pos + ( s i z e t ) count <= ( s i z e t ) s i z e ) ;
+ }
+
+ /∗∗
+ ∗ c o n v e r t CGA−TSIG d a t a t o an RDF .
+ ∗ \param [ i n ] r d f s t h e l d n s c g a r d f s s t r u c t u r e
+ ∗ \param [ i n / o u t ] r d f p o i n t e r t o t h e r e l e v a n t f i e l d i n r d f s (RDF w i l l b e a l l o c a t e d )
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+ ∗ \param [ i n ] d a t a t h e d a t a
+ ∗ \param [ i n ] l e n t h e l e n g t h o f d a t a ( mus t b e n e g a t i v e i f n o t v a r i a b l e )
+ ∗ \param [ i n ] h2n p o s i t i v e t o do h o s t t o n e t w o r k c o n v e r s i o n , i f d a t a i s n o t i n n e t w o r k o r d e r ( 0 o t h e r w i s e )
+ ∗ \ r e t u r n s t a t u s (OK i f s u c c e s s )
+ ∗/
+ stat ic l d n s s t a t u s
+ ldn s cga da ta2 rd f ( l d n s c g a r d f s ∗ rd f s , l d n s r d f ∗∗ rdf , const void ∗data , int len , u i n t 8 t h2n )
+ {
+ ldn s r d f t yp e type ;
+ s i z e t s i z e ;
+
+ i f ( rd f == &(rdfs−>algo name ) ) {
+ s i z e = CT ALGO NAME SIZE ;
+ } else i f ( rd f == &(rdfs−>type ) ) {
+ s i z e = CT TYPE SIZE ;
+ } else i f ( rd f == &(rdfs−>i p t ag ) ) {
+ s i z e = CT IP TAG SIZE ;
+ } else i f ( rd f == &(rdfs−>modi f i e r ) ) {
+ s i z e = CT MODIFIER SIZE ;
+ } else i f ( rd f == &(rdfs−>p r e f i x ) ) {
+ s i z e = CT PREFIX SIZE ;
+ } else i f ( rd f == &(rdfs−>c o l l c o un t ) ) {
+ s i z e = CT COLL COUNT SIZE ;
+ } else i f ( rd f == &(rdfs−>pub key )
+ | | rd f == &(rdfs−>e x t f i e l d s )
+ | | rd f == &(rdfs−>s i g )
+ | | rd f == &(rdfs−>old pub key )
+ | | rd f == &(rdfs−>o l d s i g ) ) {
+ i f ( l en < 0) {
+ return LDNS STATUS ERR;
+ }
+ s i z e = ( s i z e t ) l en ;
+ } else {
+ return LDNS STATUS ERR;
+ }
+
+ i f ( l en < 0 && s i z e == 1) {
+ type = LDNS RDF TYPE INT8 ;
+ } else i f ( l en < 0 && s i z e == 2) {
+ type = LDNS RDF TYPE INT16 ;
+ } else {
+ type = LDNS RDF TYPE UNKNOWN;
+ }
+
+ i f ( h2n && type == LDNS RDF TYPE INT8) {
+ ∗ rd f = l dn s n a t i v e 2 r d f i n t 8 ( type , ∗( u i n t 8 t ∗) data ) ;
+ } else i f ( h2n && type == LDNS RDF TYPE INT16) {
+ ∗ rd f = l dn s n a t i v e 2 r d f i n t 1 6 ( type , ∗( u in t16 t ∗) data ) ;
+ } else {
+ ∗ rd f = ldns rd f new f rm data ( type , s i z e , data ) ;
+ }
+
+ i f ( !∗ rd f ) {
+ return LDNS STATUS MEM ERR;
+ }
+
+ return LDNS STATUS OK;
+ }
+
+ /∗∗
+ ∗ c o n v e r t CGA−TSIG d a t a t o h o s t r e p r e s e n t a t i o n .
+ ∗ \param [ i n ] d a t a t h e d a t a
+ ∗ \param [ i n ] l e n t h e l e n g t h o f d a t a
+ ∗ \ r e t u r n t h e i n t e g e r r e p r e s e n t a t i o n
+ ∗/
+ stat ic u in t16 t
+ ldns cga data2hos t (void ∗data , s i z e t l en )
+ {
+ i f ( l en == 1) {
+ return ( u in t16 t ) ∗( u i n t 8 t ∗) data ;
+ } else i f ( l en == 2) {
+ return l dn s r e ad u in t16 ( data ) ;
+ }
+ return 0 ;
+ }
+
+ /∗∗
+ ∗ c o p i e s t h e CGA−TSIG d a t a f i e l d s t o RDFs , a s s um i n g i t i s a t f r o n t o f O t h e r Data ; c o u l d p e r h a p s b e

im p l em e n t e d l i k e RDATA p a r s i n g .
+ ∗ \param [ i n ] o t h e r d a t a r d f p o i n t e r t o t h e O t h e r Data RDF
+ ∗ \param [ o u t ] r d f s t h e o u t p u t l d n s c g a r d f s s t r u c t u r e ( w i l l b e a l l o c a t e d )
+ ∗ \param [ o u t ] p u b k t h e p a r s e d RSA p u b l i c k e y ( w i l l b e a l l o c a t e d )
+ ∗ \param [ o u t ] o p u b k t h e p a r s e d o l d RSA p u b l i c k e y ( w i l l b e a l l o c a t e d , o r NULL i f none )
+ ∗ \ r e t u r n s t a t u s (OK i f s u c c e s s )
+ ∗/
+ stat ic l d n s s t a t u s
+ l dn s t s i g o d 2 c g a r d f s ( l d n s r d f ∗ o the r da ta rd f , l d n s c g a r d f s ∗∗ rd f s , RSA ∗∗pubk , RSA ∗∗opubk )
+ {
+ uin t16 t o the r l en , c g a t s i g l e n , param len , s i g l e n , pubk len , o ld pubk len , o l d s i g l e n ;
+ int e x t l e n ;
+ u in t 8 t ∗data , ∗pubkp ;
+ u in t32 t pos = 0 ;
+ l dn s s t a t u s s ta tu s ;
+
+ i f ( ! o th e r da t a rd f ) {
+ return LDNS STATUS NULL;
+ }
+
+ othe r l e n = ( u in t16 t ) l d n s r d f s i z e ( o th e r da t a rd f ) ;
+
+ /∗ f i r s t 2 b y t e s e n c o d e o t h e r d a t a ’ s l e n g t h ∗/
+ i f ( o th e r l e n <= 2) {
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ /∗ p o i n t t o t h e f i r s t b y t e o f t h e r e a l o t h e r d a t a ∗/
+ data = ldn s rd f d a t a ( o th e r da t a rd f ) + 2 ;
+ o th e r l e n −= 2;
+
+ /∗ g e t cga− t s i g l e n ∗/
+ i f ( ! l d n s c g a a v a i l a b l e ( pos , CT LEN SIZE , o th e r l e n ) ) {
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+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ cg a t s i g l e n = ldns cga data2hos t ( data + pos , CT LEN SIZE) ;
+
+ /∗ c h e c k s i z e c o n s t r a i n t s ∗/
+ i f ( c g a t s i g l e n + CT LEN SIZE > o th e r l e n ) {
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ /∗ r e t u r n i f no CGA−TSIG d a t a ∗/
+ i f ( c g a t s i g l e n == 0) {
+ return LDNS STATUS NO DATA;
+ }
+
+ /∗ p o i n t t o t h e f i r s t b y t e o f t h e r e a l CGA−TSIG d a t a ∗/
+ data = data + CT LEN SIZE ;
+ pos = 0 ;
+
+ /∗ a l l o c a t e s t r u c t u r e h o l d i n g t h e RDFs ∗/
+ sta tus = ldns cga rd f s new ( rd f s ) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ return s t a tu s ; // r d f s h a s n o t b e e n a l l o c a t e d y e t
+ }
+
+ /∗ g e t a l g o r i t h m name ∗/
+ i f ( ! l d n s c g a a v a i l a b l e ( pos , CT ALGO NAME SIZE, c g a t s i g l e n ) ) {
+ LDNS FREE(∗ r d f s ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ sta tus = ldn s cga da ta2 rd f (∗ rd f s , &((∗ r d f s )−>algo name ) , data + pos , −1, 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ LDNS FREE(∗ r d f s ) ;
+ return s t a tu s ;
+ }
+
+ // a l g o mus t b e 0 (RSA) f o r now
+ i f ( ldns cga data2hos t ( l dn s r d f d a t a ((∗ r d f s )−>algo name ) , CT ALGO NAME SIZE) != 0) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return LDNS STATUS CRYPTO UNKNOWN ALGO;
+ }
+
+ pos += CT ALGO NAME SIZE ;
+
+ /∗ g e t t y p e ∗/
+ i f ( ! l d n s c g a a v a i l a b l e ( pos , CT TYPE SIZE , c g a t s i g l e n ) ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ sta tus = ldn s cga da ta2 rd f (∗ rd f s , &((∗ r d f s )−>type ) , data + pos , −1, 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return s t a tu s ;
+ }
+
+ // t y p e mus t b e 1 (CGA) f o r now
+ i f ( ldns cga data2hos t ( l dn s r d f d a t a ((∗ r d f s )−>type ) , CT TYPE SIZE) != 1) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return LDNS STATUS CRYPTO UNKNOWN ALGO;
+ }
+
+ pos += CT TYPE SIZE ;
+
+ /∗ g e t IP t a g ∗/
+ i f ( ! l d n s c g a a v a i l a b l e ( pos , CT IP TAG SIZE , c g a t s i g l e n ) ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ sta tus = ldn s cga da ta2 rd f (∗ rd f s , &((∗ r d f s )−>i p t ag ) , data + pos , −1, 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return s t a tu s ;
+ }
+
+ pos += CT IP TAG SIZE ;
+
+ /∗ g e t param l e n ∗/
+ i f ( ! l d n s c g a a v a i l a b l e ( pos , CT PARAM LEN SIZE , c g a t s i g l e n ) ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ param len = ldns cga data2hos t ( data + pos , CT PARAM LEN SIZE) ;
+
+ pos += CT PARAM LEN SIZE ;
+
+ // e x p e c t p a r am e t e r s ( i . e . p a r am l e n > 0 )
+ i f ( param len == 0 | | ! l d n s c g a a v a i l a b l e ( pos , param len , c g a t s i g l e n ) ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ /∗ g e t m o d i f i e r ∗/
+ i f ( ! l d n s c g a a v a i l a b l e ( pos , CT MODIFIER SIZE , c g a t s i g l e n ) ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ sta tus = ldn s cga da ta2 rd f (∗ rd f s , &((∗ r d f s )−>modi f i e r ) , data + pos , −1, 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return s t a tu s ;
+ }
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+
+ pos += CT MODIFIER SIZE ;
+
+ /∗ g e t s u b n e t p r e f i x ∗/
+ i f ( ! l d n s c g a a v a i l a b l e ( pos , CT PREFIX SIZE , c g a t s i g l e n ) ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ sta tus = ldn s cga da ta2 rd f (∗ rd f s , &((∗ r d f s )−>p r e f i x ) , data + pos , −1, 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return s t a tu s ;
+ }
+
+ pos += CT PREFIX SIZE ;
+
+ /∗ g e t c o l l i s i o n c o u n t ∗/
+ i f ( ! l d n s c g a a v a i l a b l e ( pos , CT COLL COUNT SIZE , c g a t s i g l e n ) ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ sta tus = ldn s cga da ta2 rd f (∗ rd f s , &((∗ r d f s )−>c o l l c o un t ) , data + pos , −1, 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return s t a tu s ;
+ }
+
+ pos += CT COLL COUNT SIZE ;
+
+ /∗ g e t p u b l i c k e y ∗/
+ ex t l e n = param len − CT MODIFIER SIZE − CT PREFIX SIZE − CT COLL COUNT SIZE ; // max l e n g t h
+
+ // e x p e c t a p u b l i c k e y b y d e f a u l t ( i . e . e x t l e n > 0 )
+ i f ( e x t l e n <= 0 | | ! l d n s c g a a v a i l a b l e ( pos , ex t l en , c g a t s i g l e n ) ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ // 1 . 2 . 8 4 0 . 1 1 3 5 4 9 . 1 . 1 . 1 = 2A 86 48 86 F7 0D 01 01 01 (RSA ID )
+
+ pubkp = data + pos ;
+
+ ∗pubk = d2i RSA PUBKEY(NULL, ( const unsigned char∗∗)&pubkp , e x t l e n ) ;
+
+ i f ( !∗ pubk ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ return LDNS STATUS ERR;
+ }
+
+ pubk len = ( u in t16 t ) ( pubkp − ( data + pos ) ) ;
+
+ sta tu s = ldn s cga da ta2 rd f (∗ rd f s , &((∗ r d f s )−>pub key ) , data + pos , ( int ) pubk len , 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ RSA free (∗pubk ) ;
+ return s t a tu s ;
+ }
+
+ pos += pubk len ;
+
+ /∗ g e t e x t e n s i o n f i e l d s ( i f any ) ∗/
+ ex t l e n −= pubk len ;
+
+ i f ( e x t l e n > 0) {
+ sta tus = ldn s cga da ta2 rd f (∗ rd f s , &((∗ r d f s )−>e x t f i e l d s ) , data + pos , ex t l en , 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ RSA free (∗pubk ) ;
+ return s t a tu s ;
+ }
+
+ pos += ex t l e n ;
+ }
+
+ /∗ g e t s i g n a t u r e l e n ∗/
+ i f ( ! l d n s c g a a v a i l a b l e ( pos , CT SIG LEN SIZE , c g a t s i g l e n ) ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ RSA free (∗pubk ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ s i g l e n = ldns cga data2hos t ( data + pos , CT SIG LEN SIZE) ;
+
+ pos += CT SIG LEN SIZE ;
+
+ /∗ g e t s i g n a t u r e ∗/
+ // e x p e c t a s i g n a t u r e ( i . e . s i g l e n > 0 )
+ i f ( s i g l e n == 0 | | ! l d n s c g a a v a i l a b l e ( pos , s i g l e n , c g a t s i g l e n ) ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ RSA free (∗pubk ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ sta tus = ldn s cga da ta2 rd f (∗ rd f s , &((∗ r d f s )−>s i g ) , data + pos , ( int ) s i g l e n , 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ RSA free (∗pubk ) ;
+ return s t a tu s ;
+ }
+
+ pos += s i g l e n ;
+
+ /∗ g e t o l d p u b l i c k e y l e n ∗/
+ i f ( ! l d n s c g a a v a i l a b l e ( pos , CT OLD PK LEN SIZE , c g a t s i g l e n ) ) {
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+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ RSA free (∗pubk ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ old pubk len = ldns cga data2hos t ( data + pos , CT OLD PK LEN SIZE) ;
+
+ pos += CT OLD PK LEN SIZE ;
+
+ /∗ g e t o l d p u b l i c k e y ( i f any ) ∗/
+ i f ( o ld pubk len > 0) {
+ i f ( ! l d n s c g a a v a i l a b l e ( pos , o ld pubk len , c g a t s i g l e n ) ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ RSA free (∗pubk ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ pubkp = data + pos ;
+
+ ∗opubk = d2i RSA PUBKEY(NULL, ( const unsigned char∗∗)&pubkp , o ld pubk len ) ;
+
+ i f ( !∗ opubk ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ RSA free (∗pubk ) ;
+ return LDNS STATUS ERR;
+ }
+
+ i f ( ( u in t16 t ) ( pubkp − ( data + pos ) ) != ( u in t16 t ) o ld pubk len ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ RSA free (∗pubk ) ;
+ RSA free (∗opubk ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ sta tus = ldn s cga da ta2 rd f (∗ rd f s , &((∗ r d f s )−>old pub key ) , data + pos , ( int ) o ld pubk len , 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ RSA free (∗pubk ) ;
+ RSA free (∗opubk ) ;
+ return s t a tu s ;
+ }
+
+ pos += old pubk len ;
+ } else {
+ ∗opubk = NULL;
+ }
+
+ /∗ g e t o l d s i g n a t u r e l e n ∗/
+ i f ( ! l d n s c g a a v a i l a b l e ( pos , CT OLD SIG LEN SIZE , c g a t s i g l e n ) ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ RSA free (∗pubk ) ;
+ RSA free (∗opubk ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ o l d s i g l e n = ldns cga data2hos t ( data + pos , CT OLD SIG LEN SIZE) ;
+
+ pos += CT OLD SIG LEN SIZE ;
+
+ /∗ g e t o l d s i g n a t u r e ( i f any ) ∗/
+ i f ( o l d s i g l e n > 0) {
+ i f ( ! l d n s c g a a v a i l a b l e ( pos , o l d s i g l e n , c g a t s i g l e n ) ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ RSA free (∗pubk ) ;
+ RSA free (∗opubk ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ sta tus = ldn s cga da ta2 rd f (∗ rd f s , &((∗ r d f s )−>o l d s i g ) , data + pos , ( int ) o l d s i g l e n , 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ RSA free (∗pubk ) ;
+ RSA free (∗opubk ) ;
+ return s t a tu s ;
+ }
+
+ pos += o l d s i g l e n ;
+ }
+
+ /∗ c h e c k s i z e c o n s t r a i n t s ∗/
+ i f ( l d n s c g a a v a i l a b l e ( pos , 1 , c g a t s i g l e n ) ) {
+ ldn s c g a r d f s d e e p f r e e (∗ r d f s ) ;
+ RSA free (∗pubk ) ;
+ RSA free (∗opubk ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ return LDNS STATUS OK;
+ }
+
+ /∗∗
+ ∗ c o n c a t e n a t e s d a t a f i e l d s .
+ ∗ \param [ i n ] r d f s an a r r a y o f p o i n t e r s t o t h e to−be−c o n c a t e n a t e d RDFs i n o r d e r
+ ∗ \param [ i n ] num t h e number o f e l e m e n t s c o n t a i n e d b y r d f s
+ ∗ \param [ o u t ] b u f f e r t h e o u t p u t b u f f e r ( w i l l b e a l l o c a t e d )
+ ∗ \ r e t u r n s t a t u s (OK i f s u c c e s s )
+ ∗/
+ stat ic l d n s s t a t u s
+ l dn s t s i g c on c a t d a t a ( l d n s r d f ∗∗ rd f s , u i n t 8 t num, l d n s bu f f e r ∗∗ bu f f e r )
+ {
+ u in t8 t i ;
+ u in t32 t s i z e = 0 ;
+
+ i f ( ! r d f s ) {
+ return LDNS STATUS NULL;
+ }
+
+ for ( i = 0 ; i < num; i++) {
+ i f ( r d f s [ i ] ) {
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+ s i z e += l d n s r d f s i z e ( r d f s [ i ] ) ;
+ }
+ }
+
+ ∗ bu f f e r = ldns bu f f e r new ( s i z e ) ;
+
+ i f ( !∗ bu f f e r ) {
+ return LDNS STATUS MEM ERR;
+ }
+
+ for ( i = 0 ; i < num; i++) {
+ i f ( r d f s [ i ] && l d n s r d f s i z e ( r d f s [ i ] ) > 0) {
+ ldn s bu f f e r w r i t e (∗ buf f e r , l dn s r d f d a t a ( r d f s [ i ] ) , l d n s r d f s i z e ( r d f s [ i ] ) ) ;
+ }
+ }
+
+ return LDNS STATUS OK;
+ }
+
+
+ /∗∗
+ ∗ c o n c a t e n a t e s t h e f i e l d s t h a t a r e i n p u t f o r t h e CGA s i g n a t u r e c r e a t i o n and
+ ∗ v e r i f i c a t i o n o p e r a t i o n s ( n o t t o b e c o n f u s e d w i t h t h e CGA v e r i f i c a t i o n , s e e
+ ∗ t h e l d n s c g a v e r i f y ( ) f u n c t i o n ) .
+ ∗ \param [ i n ] p k t w i r e t h e w i r e w i t h o u t TSIG RR ( me s s a g e t o b e s i g n e d )
+ ∗ \param [ i n ] p k t w i r e s i z e t h e w i r e s i z e
+ ∗ \param [ i n ] t i m e s i g n e d r d f t h e t im e s i g n e d f i e l d ( a l l o t h e r f i e l d s d e f i n e d
+ ∗ b y TSIG s h o u l d p r o b a b l y b e i n c l u d e d t o o )
+ ∗ \param [ i n ] r d f s t h e CGA−TSIG f i e l d s f r om O t h e r Data t h a t a r e t o b e i n c l u d e d
+ ∗ \param [ o u t ] b u f f e r t h e o u t p u t b u f f e r ( w i l l b e a l l o c a t e d )
+ ∗ \ r e t u r n s t a t u s (OK i f s u c c e s s )
+ ∗/
+ stat ic l d n s s t a t u s
+ ldns cga concat msg ( u i n t 8 t ∗pkt wire , s i z e t pk t w i r e s i z e ,
+ l dn s r d f ∗ t ime s i gned rd f , l d n s c g a r d f s ∗ rd f s , l d n s bu f f e r ∗∗ bu f f e r )
+ {
+ ldn s s t a t u s s ta tu s ;
+ l dn s r d f ∗wi r e r d f ;
+
+ i f ( ! pkt wire | | ! t ime s i gn ed rd f | | ! r d f s ) {
+ return LDNS STATUS NULL;
+ }
+
+ /∗ t e m p o r a r i l y e n c a p s u l a t e t h e w i r e i n an RDF ∗/
+ wi r e r d f = ldns rd f new (LDNS RDF TYPE UNKNOWN, pk t w i r e s i z e , pkt wire ) ;
+
+ i f ( ! w i r e r d f ) {
+ return LDNS STATUS MEM ERR;
+ }
+
+ // NOTE : no 128− b i t t y p e t a g d e f i n e d f o r CGA−TSIG
+
+ // e x t e n s i o n f i e l d s n o t m e n t i o n e d i n d r a f t ( b u t s h o u l d p r o b a b l y b e i n c l u d e d ,
+ // i f t h e p a r am e t e r s s h o u l d b e i n c l u d e d a t a l l ; i t d o e s n o t c o n f o rm t o CGA,
+ // b u t i t p r o p a b l y d o e s c on f o rm t o TSIG s i n c e t h e y a r e p a r t o f O t h e r Data )
+ ldn s r d f ∗ cmpts rd f s [ 7 ] = { rd f s−>modi f ier ,
+ rdfs−>pre f i x ,
+ rdfs−>co l l c ount ,
+ rdfs−>pub key ,
+ wi re rd f ,
+ rdfs−>ip tag ,
+ t ime s i gn ed rd f } ;
+
+ /∗ c o n c a t e n a t e t h e i n p u t ∗/
+ sta tus = l dn s t s i g c on c a t d a t a ( cmpts rdfs , 7 , bu f f e r ) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ ∗ bu f f e r = NULL; // b u f f e r h a s n o t b e e n a l l o c a t e d y e t
+ }
+
+ l d n s r d f f r e e ( w i r e r d f ) ;
+
+ return s t a tu s ;
+ }
+
+
+ /∗∗
+ ∗ c o p i e s t h e CGA−TSIG d a t a f i e l d s i n t o t h e O t h e r Data RDF .
+ ∗ \param [ i n ] r d f s t h e i n p u t l d n s c g a r d f s s t r u c t u r e
+ ∗ \param [ o u t ] o t h e r d a t a r d f t h e r e s u l t i n g O t h e r Data RDF ( w i l l b e a l l o c a t e d )
+ ∗ \ r e t u r n s t a t u s (OK i f s u c c e s s )
+ ∗/
+ stat ic l d n s s t a t u s
+ l dn s c g a r d f s 2 t s i g o d ( l d n s c g a r d f s ∗ rd f s , l d n s r d f ∗∗ o th e r da t a rd f )
+ {
+ uin t16 t c g a t s i g l e n , param len , s i g l e n ;
+ u in t16 t o ld pubk len = 0 ;
+ u in t16 t o l d s i g l e n = 0 ;
+ l dn s r d f ∗ c t l r d f , ∗ p l rd f , ∗ s l r d f , ∗ opk l rd f , ∗ o s l r d f ;
+ l dn s bu f f e r ∗ bu f f e r = NULL;
+ ldn s s t a t u s s ta tu s = LDNS STATUS OK;
+
+ /∗ c a l c u l a t e l e n g t h s ∗/
+ param len = CT MODIFIER SIZE + CT PREFIX SIZE + CT COLL COUNT SIZE
+ + l d n s r d f s i z e ( rd f s−>pub key ) ;
+
+ i f ( rd f s−>e x t f i e l d s ) {
+ param len += l d n s r d f s i z e ( rd f s−>e x t f i e l d s ) ;
+ }
+
+ s i g l e n = l d n s r d f s i z e ( rd f s−>s i g ) ;
+
+ c g a t s i g l e n = CT ALGO NAME SIZE + CT TYPE SIZE + CT IP TAG SIZE + CT PARAM LEN SIZE
+ + param len + CT SIG LEN SIZE + s i g l e n + CT OLD PK LEN SIZE
+ + CT OLD SIG LEN SIZE ;
+
+ i f ( rd f s−>old pub key ) {
+ old pubk len = l d n s r d f s i z e ( rd f s−>old pub key ) ;
+ c g a t s i g l e n += old pubk len ;
+ }
+
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+ i f ( rd f s−>o l d s i g ) {
+ o l d s i g l e n = l d n s r d f s i z e ( rd f s−>o l d s i g ) ;
+ c g a t s i g l e n += o l d s i g l e n ;
+ }
+
+ /∗ p u t t h e l e n g t h f i e l d s i n RDFs f o r t h e c o n c a t o p e r a t i o n ∗/
+ c t l r d f = l dn s n a t i v e 2 r d f i n t 1 6 (LDNS RDF TYPE INT16 , c g a t s i g l e n ) ;
+ p l r d f = l dn s n a t i v e 2 r d f i n t 1 6 (LDNS RDF TYPE INT16 , param len ) ;
+ s l r d f = l dn s n a t i v e 2 r d f i n t 1 6 (LDNS RDF TYPE INT16 , s i g l e n ) ;
+ opk l r d f = l dn s n a t i v e 2 r d f i n t 1 6 (LDNS RDF TYPE INT16 , o ld pubk len ) ;
+ o s l r d f = l dn s n a t i v e 2 r d f i n t 1 6 (LDNS RDF TYPE INT16 , o l d s i g l e n ) ;
+
+ i f ( ! c t l r d f | | ! p l r d f | | ! s l r d f | | ! o pk l r d f | | ! o s l r d f ) {
+ sta tus = LDNS STATUS MEM ERR;
+ goto c l ean ;
+ }
+
+ ldn s r d f ∗ cmpts rd f s [ 1 6 ] = { c t l r d f ,
+ rdfs−>algo name ,
+ rdfs−>type ,
+ rdfs−>ip tag ,
+ p l rd f ,
+ rdfs−>modi f ier ,
+ rdfs−>pre f i x ,
+ rdfs−>co l l c ount ,
+ rdfs−>pub key ,
+ rdfs−>e x t f i e l d s ,
+ s l r d f ,
+ rdfs−>s ig ,
+ opk l rd f ,
+ rdfs−>old pub key ,
+ o s l r d f ,
+ rdfs−>o l d s i g } ;
+
+ /∗ c o n c a t e n a t e t h e f i e l d s ∗/
+ sta tus = l dn s t s i g c on c a t d a t a ( cmpts rdfs , 16 , &bu f f e r ) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ;
+ }
+
+ /∗ c r e a t e t h e O t h e r Data RDF ∗/
+ ∗ o th e r da t a rd f = l dn s na t i v e 2 r d f i n t 1 6 da t a ( l d n s bu f f e r c a p a c i t y ( bu f f e r ) , l d n s bu f f e r b e g i n ( bu f f e r ) ) ;
+
+ l d n s b u f f e r f r e e ( bu f f e r ) ;
+
+ i f ( !∗ o th e r da t a rd f ) {
+ sta tus = LDNS STATUS MEM ERR;
+ }
+
+ clean :
+ l d n s r d f f r e e ( c t l r d f ) ;
+ l d n s r d f f r e e ( p l r d f ) ;
+ l d n s r d f f r e e ( s l r d f ) ;
+ l d n s r d f f r e e ( opk l r d f ) ;
+ l d n s r d f f r e e ( o s l r d f ) ;
+
+ return s t a tu s ;
+ }
+
+ /∗∗
+ ∗ p e r f o r m e s CGA v e r i f i c a t i o n o f an IPv6 a d d r e s s [ RFC3972 ] .
+ ∗ \param [ i n ] n s t h e s o c k a d d r i n 6 s t r u c t c o n t a i n i n g t h e IP a d d r e s s o f t h e r emo t e name s e r v e r
+ ∗ \param [ i n ] param t h e c g a p a r am e t e r s
+ ∗ \ r e t u r n s t a t u s (OK i f s u c c e s s )
+ ∗/
+ stat ic l d n s s t a t u s
+ l dn s c g a v e r i f y ( struct sockaddr in6 ∗ns , l d n s c g a r d f s ∗ r d f s )
+ {
+ ldn s s t a t u s s ta tu s = LDNS STATUS OK;
+ l dn s bu f f e r ∗ concat = NULL;
+ unsigned char hash [LDNS SHA1 DIGEST LENGTH] , id [ 8 ] ;
+ u in t16 t i ;
+ unsigned char sec ;
+
+ i f ( ! ns | | ! r d f s ) {
+ return LDNS STATUS NULL;
+ }
+
+ ldn s r d f ∗ param rdfs [ 5 ] = { rd f s−>modi f ier ,
+ rdfs−>pre f i x ,
+ rdfs−>co l l c ount ,
+ rdfs−>pub key ,
+ rdfs−>e x t f i e l d s } ;
+
+ /∗ c o l l i s i o n c o u n t mus t b e 0 , 1 o r 2 ∗/
+ i f ( ldns cga data2hos t ( l dn s r d f d a t a ( rdf s−>c o l l c o un t ) , CT COLL COUNT SIZE) > 2) {
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ /∗ s u b n e t p r e f i x mus t ma t ch ∗/
+ i f (memcmp(&ns−>s in6 addr , l dn s r d f d a t a ( rd f s−>p r e f i x ) , 8) != 0) {
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ }
+
+ /∗ g e n e r a t e h a s h 1 ∗/
+ sta tus = l dn s t s i g c on c a t d a t a ( param rdfs , 5 , &concat ) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ return s t a tu s ; // we can r e t u r n s a f e l y , c o n c a t h a s n o t b e e n a l l o c a t e d y e t
+ }
+
+ (void ) ldns sha1 ( l d n s bu f f e r b e g i n ( concat ) , l d n s bu f f e r c a p a c i t y ( concat ) , hash ) ;
+
+ memcpy( id , ns−>s in6 addr . s6 addr + 8 , 8) ;
+
+ /∗ e x t r a c t t h e s e c p a r am e t e r ∗/
+ sec = id [ 0 ] >> 5 ;
+
+ /∗ h a s h 1 ( f i r s t 8 o c t e t s ) mus t ma t ch t h e i n t e r f a c e ID o f t h e a d d r e s s ,
+ ∗ i g n o r i n g b i t s 0 , 1 , 2 , 6 and 7 o f t h e f i r s t b y t e ∗/
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+ hash [ 0 ] &= 0x1c ;
+ id [ 0 ] &= 0x1c ;
+
+ i f (memcmp( hash , id , 8) != 0) {
+ sta tus = LDNS STATUS CRYPTO TSIG BOGUS;
+ goto c l ean ;
+ }
+
+ /∗ g e n e r a t e h a s h 2 ∗/
+ memset ( l d n s b u f f e r a t ( concat , 16) , 0 , 9) ;
+
+ (void ) ldns sha1 ( l d n s bu f f e r b e g i n ( concat ) , l d n s bu f f e r c a p a c i t y ( concat ) , hash ) ;
+
+ /∗ 2∗ s e c l e f t m o s t b y t e s o f h a s h 2 mus t b e z e r o ∗/
+ sec ∗= 2;
+
+ for ( i = 0 ; i < sec ; i++) {
+ i f ( hash [ i++] != 0 | | hash [ i ] != 0) {
+ sta tus = LDNS STATUS CRYPTO TSIG BOGUS;
+ goto c l ean ;
+ }
+ }
+
+ clean :
+ l d n s b u f f e r f r e e ( concat ) ;
+ return s t a tu s ;
+ }
+
+
1056 ,1060 c279
+ i f ( ! l d n s p k t t s i g v e r i f y n e x t 2 ( pkt , wire , wire len , key name , key data , or ig mac rd f , NULL, 0 , 0)
+ != LDNS STATUS OK) {
+ return f a l s e ;
+ }
+ return t rue ;
−−−
− return l d n s p k t t s i g v e r i f y n e x t ( pkt , wire , wire len , key name , key data , or ig mac rd f , 0) ;
1063 ,1070 d281
+ ldn s s t a t u s
+ l d n s p k t t s i g v e r i f y 2 ( ldns pkt ∗pkt , u i n t 8 t ∗wire , s i z e t wire len , const char ∗key name ,
+ const char ∗key data , l d n s r d f ∗ or ig mac rd f , const struct sockaddr s to rage ∗ns out , s i z e t n s ou t l en )
+ {
+ return l d n s p k t t s i g v e r i f y n e x t 2 ( pkt , wire , wire len , key name , key data , or ig mac rd f , ns out ,

n s out l en , 0) ;
+ }
+
+
1075 ,1086 d285
+ i f ( l d n s p k t t s i g v e r i f y n e x t 2 ( pkt , wire , wire len , key name , key data , or ig mac rd f , NULL, 0 ,

t s i g t im e r s o n l y )
+ != LDNS STATUS OK) {
+ return f a l s e ;
+ }
+ return t rue ;
+ }
+
+ ldn s s t a t u s
+ l d n s p k t t s i g v e r i f y n e x t 2 ( ldns pkt ∗pkt , u i n t 8 t ∗wire , s i z e t wire len , const char∗ key name ,
+ const char ∗key data , l d n s r d f ∗ or ig mac rd f , const struct sockaddr s to rage ∗ns out , s i z e t ns out l en ,
+ int t s i g t im e r s o n l y )
+ {
1098 ,1105 d296
+ struct sockaddr s to rage ∗ ns in ;
+ s i z e t n s i n l e n ;
+ struct sockaddr in6 ∗out in6 , ∗ i n i n 6 ;
+ unsigned char hash [LDNS SHA1 DIGEST LENGTH ] ;
+ l dn s bu f f e r ∗ concat = NULL;
+ l dn s c g a r d f s ∗ c g a rd f s = NULL;
+ RSA ∗pubk = NULL;
+ RSA ∗opubk = NULL;
1109d299
+ char ∗algorithm name = NULL;
1111d300
+ // s a v e p o i n t e r t o t h e p a c k e t ’ s t s i g r r
1114 c303
+ i f ( ! o r i g t s i g ) {
−−−
− i f ( ! o r i g t s i g | | l d n s r r r d c oun t ( o r i g t s i g ) <= 6) {
1116 c305
+ return LDNS STATUS CRYPTO TSIG BOGUS;
−−−
− return f a l s e ;
1118 ,1122 d306
+
+ i f ( l dn s r r r d c oun t ( o r i g t s i g ) <= 6) {
+ ldn s r d f d e e p f r e e ( key name rdf ) ;
+ return LDNS STATUS CRYPTO TSIG BOGUS;
+ } // g e t t h e c o n t e n t s o f t h e r d a t a f i e l d s
1124 c308
+ t ime s i gn ed rd f = l d n s r r r d f ( o r i g t s i g , 1) ; // NOTE : n o t b e i n g c h e c k e d ?
−−−
− t ime s i gn ed rd f = l d n s r r r d f ( o r i g t s i g , 1) ;
1131 ,1136 d314
+ algorithm name = l dn s r d f 2 s t r ( a l go r i thm rd f ) ;
+ i f ( ! algorithm name ) {
+ ldn s r d f d e e p f r e e ( key name rdf ) ;
+ return LDNS STATUS MEM ERR;
+ }
+
1144d321
+ // c o p y t h e w i r e , b u t w i t h t h e t s i g r r r emov e d (NOTE : c h e c k i f i s NULL? )
1147 ,1201 c324 ,326
+ i f ( strcasecmp ( algorithm name , ”cga−t s i g . ” ) == 0) {
+ /∗ 1 . IP c h e c k ( 3 ) ∗/
+ ns in = ldn s rd f 2na t i v e s o ckadd r s t o r a g e ( ldns pkt answer f rom ( pkt ) , 0 , &n s i n l e n ) ;
+
+ i f ( ! ns out | | ! n s i n ) {
+ sta tus = LDNS STATUS NULL;
+ goto c l ean ;
+ }
+
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+ i f ( n s ou t l en != n s i n l e n ) {
+ sta tus = LDNS STATUS ERR;
+ goto c l ean ;
+ }
+
+ #i f n d e f S SPLINT S
+ i f ( ( ns out−>s s f am i l y != AF INET6) | | ( ns in−>s s f am i l y != AF INET6) ) {
+ LDNS FREE( ns in ) ;
+ s ta tu s = LDNS STATUS CRYPTO TSIG BOGUS;
+ goto c l ean ;
+ }
+ #end i f
+
+ out in6 = ( struct sockaddr in6 ∗) ns out ;
+ i n i n 6 = ( struct sockaddr in6 ∗) n s i n ;
+
+ i f (memcmp(&out in6−>s in6 addr , &in in6−>s in6 addr , LDNS IP6ADDRLEN) != 0) {
+ LDNS FREE( ns in ) ;
+ s ta tu s = LDNS STATUS CRYPTO TSIG BOGUS;
+ goto c l ean ;
+ }
+
+ LDNS FREE( ns in ) ;
+
+ /∗ e x t r a c t CGA−TSIG d a t a f i e l d s ∗/
+ sta tus = l dn s t s i g o d 2 c g a r d f s ( o the r da ta rd f , &cga rd f s , &pubk , &opubk ) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ sta tus = LDNS STATUS CRYPTO TSIG BOGUS; // b e t t e r t o c h e c k f o r s e r v e r e r r o r
+ goto c l ean ;
+ }
+
+ /∗ 2 . CGA c h e c k ( 1 ) ∗/
+ sta tus = l dn s c g a v e r i f y ( out in6 , c g a rd f s ) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ;
+ }
+
+ /∗ 3 . s i g n a t u r e c h e c k ( 4 ) ∗/
+ sta tus = ldns cga concat msg ( prepared wire , p r epa r ed w i r e s i z e ,
+ t ime s i gned rd f , cga rd f s , &concat ) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ;
+ }
−−−
− s t a tu s = ldns t s ig mac new(&my mac rdf , prepared wire , p r epa r ed w i r e s i z e ,
− key data , key name rdf , fudge rd f , a lgor i thm rdf ,
− t ime s i gned rd f , e r r o r r d f , o the r da ta rd f , o r ig mac rd f , t s i g t im e r s o n l y ) ;
1203 ,1236 d327
+ (void ) ldns sha1 ( l d n s bu f f e r b e g i n ( concat ) , l d n s bu f f e r c a p a c i t y ( concat ) , hash ) ;
+
+ i f ( ! RSA verify (NID sha1 , hash , LDNS SHA1 DIGEST LENGTH,
+ ldn s rd f d a t a ( cga rd f s−>s i g ) , l d n s r d f s i z e ( cga rd f s−>s i g ) , pubk ) ) {
+ sta tus = LDNS STATUS CRYPTO TSIG BOGUS;
+ goto c l ean ;
+ } else {
+ sta tus = LDNS STATUS OK;
+ }
+
+ /∗ 4 . o l d p u b l i c k e y / s i g n a t u r e s t e p s go h e r e ∗/
+
+ } else {
+ // c a l c u l a t e t h e mac
+ sta tus = ldns t s ig mac new(&my mac rdf , prepared wire , p r epa r ed w i r e s i z e ,
+ key data , key name rdf , fudge rd f , a lgor i thm rdf ,
+ t ime s i gned rd f , e r r o r r d f , o the r da ta rd f , o r ig mac rd f , t s i g t im e r s o n l y ) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ;
+ }
+
+ // compar e t h e macs
+ i f ( ldns rd f compare ( pkt mac rdf , my mac rdf ) == 0) {
+ ldn s r d f d e e p f r e e ( my mac rdf ) ;
+ s ta tu s = LDNS STATUS OK;
+ } else {
+ ldn s r d f d e e p f r e e ( my mac rdf ) ;
+ s ta tu s = LDNS STATUS CRYPTO TSIG BOGUS;
+ goto c l ean ;
+ }
+ }
+
+ clean :
1238d328
+ l d n s r d f d e e p f r e e ( key name rdf ) ;
1240 ,1244 c330 ,334
+ /∗ Put b a c k t h e v a l u e s
+ ∗ NOTE : p k t h a s n o t b e e n u s e d f o r g e n e r a t i n g a n y t h i n g i n t h e meant ime ,
+ ∗ l d n s t s i g p r e p a r e p k t w i r e ( ) r emo v e s t h e TSIG w i t h o u t t o u c h i n g p k t .
+ ∗ Remove t h i s ?
+ ∗/
−−−
− i f ( s t a tu s != LDNS STATUS OK) {
− l d n s r d f d e e p f r e e ( key name rdf ) ;
− return f a l s e ;
− }
− /∗ Put b a c k t h e v a l u e s ∗/
1248 ,1253 c338
+ l d n s c g a r d f s d e e p f r e e ( c g a rd f s ) ;
+
+ i f ( pubk ) {
+ RSA free (pubk ) ;
+ pubk = NULL;
+ }
−−−
− l d n s r d f d e e p f r e e ( key name rdf ) ;
1255 ,1257 c340 ,345
+ i f ( opubk ) {
+ RSA free ( opubk ) ;
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+ opubk = NULL;
−−−
− i f ( ldns rd f compare ( pkt mac rdf , my mac rdf ) == 0) {
− l d n s r d f d e e p f r e e ( my mac rdf ) ;
− return t rue ;
− } else {
− l d n s r d f d e e p f r e e ( my mac rdf ) ;
− return f a l s e ;
1259 ,1262 d346
+
+ l d n s b u f f e r f r e e ( concat ) ;
+
+ return s t a tu s ;
1271 ,1282 c355
+ return l d n s p k t t s i g s i g n n e x t 2 ( pkt , key name , key data , NULL, NULL, NULL, NULL,
+ fudge , algorithm name , query mac , NULL, NULL, NULL, 0 , 0 , 0) ;
+ }
+
+ ldn s s t a t u s
+ l d n s p k t t s i g s i g n 2 ( ldns pkt ∗pkt , const char ∗key name , const char ∗key data ,
+ RSA ∗pvt key , RSA ∗pub key , RSA ∗o ld pvt key , RSA ∗old pub key ,
+ u in t16 t fudge , const char ∗algorithm name , l d n s r d f ∗query mac , u i n t 8 t ∗ ip tag ,
+ u in t 8 t ∗modi f ier , u i n t 8 t ∗pre f i x , s i z e t co l l c ount , int r eque s t on ly )
+ {
+ return l d n s p k t t s i g s i g n n e x t 2 ( pkt , key name , key data , pvt key , pub key , o ld pvt key , old pub key ,
+ fudge , algorithm name , query mac , ip tag , modi f i er , p r e f i x , c o l l c ount , r eques t on ly , 0) ;
−−−
− return l d n s p k t t s i g s i g n n e x t ( pkt , key name , key data , fudge , algorithm name , query mac , 0) ;
1289 ,1298 d361
+ return l d n s p k t t s i g s i g n n e x t 2 ( pkt , key name , key data , NULL, NULL, NULL, NULL,
+ fudge , algorithm name , query mac , NULL, NULL, NULL, 0 , 0 , t s i g t im e r s o n l y ) ;
+ }
+
+ ldn s s t a t u s
+ l d n s p k t t s i g s i g n n e x t 2 ( ldns pkt ∗pkt , const char ∗key name , const char ∗key data ,
+ RSA ∗pvt key , RSA ∗pub key , RSA ∗o ld pvt key , RSA ∗old pub key ,
+ u in t16 t fudge , const char ∗algorithm name , l d n s r d f ∗query mac , u i n t 8 t ∗ ip tag ,
+ u in t 8 t ∗modi f ier , u i n t 8 t ∗pre f i x , u i n t 8 t co l l c ount , int r eques t on ly , int t s i g t im e r s o n l y )
+ {
1317 ,1332 d379
+ unsigned char hash [LDNS SHA1 DIGEST LENGTH ] ;
+ l dn s bu f f e r ∗ concat = NULL;
+ l dn s c g a r d f s ∗ c g a rd f s = NULL;
+ unsigned char ∗pubk buf = NULL;
+ unsigned char ∗ s i g bu f = NULL;
+ unsigned int s i g l e n = 0 ;
+ int pubk len = 0 ;
+ u in t16 t va l = 0 ;
+
+ // s u p p r e s s c om p i l e w a r n i n g
+ i f ( o ld pvt key ) {
+ RSA free ( o ld pvt key ) ;
+ o ld pvt key = NULL;
+ }
+ //
+
1367 c414 ,416
+ i f ( ! f udge rd f | | ! o r i g i d r d f | | ! e r r o r r d f ) {
−−−
− o th e r da t a rd f = l dn s na t i v e 2 r d f i n t 1 6 da t a (0 , NULL) ;
−
− i f ( ! f udge rd f | | ! o r i g i d r d f | | ! e r r o r r d f | | ! o t h e r da t a rd f ) {
1372 ,1376 c421 ,424
+ i f ( ! r eque s t on ly ) {
+ i f ( ldns pkt2wi re (&pkt wire , pkt , &pk t w i r e l en ) != LDNS STATUS OK) {
+ sta tus = LDNS STATUS ERR;
+ goto c l ean ;
+ }
−−−
− i f ( ldns pkt2wi re (&pkt wire , pkt , &pk t w i r e l en ) != LDNS STATUS OK) {
− s t a tu s = LDNS STATUS ERR;
− goto c l ean ;
− }
1378 ,1547 c426 ,428
+ i f ( strcasecmp ( algorithm name , ”cga−t s i g . ” ) == 0) {
+ i f ( ! pvt key | | ! pub key | | ! i p t ag | | ! mod i f i e r | | ! p r e f i x ) {
+ sta tus = LDNS STATUS NULL;
+ goto c l ean ;
+ }
+
+ /∗ a l l o c a t e s t r u c t u r e h o l d i n g t h e RDFs ∗/
+ sta tus = ldns cga rd f s new (& cga rd f s ) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ; // c g a r d f s h a s n o t b e e n a l l o c a t e d y e t
+ }
+
+ /∗ s e t e n c r y p t i o n a l g o r i t h m ∗/
+ val = 0 ;
+
+ sta tu s = ldn s cga da ta2 rd f ( cga rd f s , &( cga rd f s−>algo name ) ,
+ &val , −1, 1) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ;
+ }
+
+ /∗ s e t v a l i d a t i o n a l g o r i t h m ∗/
+ val = 1 ;
+
+ sta tu s = ldn s cga da ta2 rd f ( cga rd f s , &( cga rd f s−>type ) ,
+ &val , −1, 1) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ;
+ }
+
+ /∗ s e t IP t a g ∗/
+ sta tus = ldn s cga da ta2 rd f ( cga rd f s , &( cga rd f s−>i p t ag ) ,
+ ip tag , −1, 0) ;
+
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+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ;
+ }
+
+ /∗ s e t m o d i f i e r ∗/
+ sta tus = ldn s cga da ta2 rd f ( cga rd f s , &( cga rd f s−>modi f i e r ) ,
+ modi f i er , −1, 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ;
+ }
+
+ /∗ s e t p r e f i x ∗/
+ sta tus = ldn s cga da ta2 rd f ( cga rd f s , &( cga rd f s−>p r e f i x ) ,
+ pre f i x , −1, 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ;
+ }
+
+ /∗ s e t c o l l i s i o n c o u n t ∗/
+ sta tus = ldn s cga da ta2 rd f ( cga rd f s , &( cga rd f s−>c o l l c o un t ) ,
+ &co l l c ount , −1, 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ;
+ }
+
+ /∗ c o n v e r t p u b l i c k e y ∗/
+ pubk len = i2d RSA PUBKEY( pub key , &pubk buf ) ;
+
+ i f ( pubk len <= 0) {
+ sta tus = LDNS STATUS CRYPTO TSIG ERR;
+ goto c l ean ;
+ }
+
+ /∗ s e t p u b l i c k e y ∗/
+ sta tus = ldn s cga da ta2 rd f ( cga rd f s , &( cga rd f s−>pub key ) ,
+ pubk buf , pubk len , 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ;
+ }
+
+ i f ( o ld pub key ) {
+ f r e e ( pubk buf ) ;
+ pubk buf = NULL;
+
+ /∗ c o n v e r t o l d p u b l i c k e y ( a s s um i n g i t i s a l s o a S u b j e c t P u b l i c K e y I n f o s t r u c t u r e ) ∗/
+ pubk len = i2d RSA PUBKEY( old pub key , &pubk buf ) ;
+
+ i f ( pubk len <= 0) {
+ sta tus = LDNS STATUS CRYPTO TSIG ERR;
+ goto c l ean ;
+ }
+
+ /∗ s e t o l d p u b l i c k e y ∗/
+ sta tus = ldn s cga da ta2 rd f ( cga rd f s , &( cga rd f s−>old pub key ) ,
+ pubk buf , pubk len , 0) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ;
+ }
+ }
+
+ /∗ c o n c a t e n a t e t h e m e s s a g e and t h e f i e l d s ∗/
+ sta tus = ldns cga concat msg ( pkt wire , pkt w i r e l en ,
+ t ime s i gned rd f , cga rd f s , &concat ) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ;
+ }
+
+ /∗ d i g e s t t h e c o n c a t e n a t i o n ∗/
+ (void ) ldns sha1 ( l d n s bu f f e r b e g i n ( concat ) , l d n s bu f f e r c a p a c i t y ( concat ) , hash ) ;
+
+ /∗ s i g n ∗/
+ s i g bu f = LDNS XMALLOC(unsigned char , RSA size ( pvt key ) ) ;
+
+ i f ( ! s i g bu f ) {
+ sta tus = LDNS STATUS MEM ERR;
+ goto c l ean ;
+ }
+
+ i f ( ! RSA sign (NID sha1 , hash , LDNS SHA1 DIGEST LENGTH,
+ s ig bu f , &s i g l e n , pvt key ) ) {
+ LDNS FREE( s i g bu f ) ;
+ s ta tu s = LDNS STATUS CRYPTO TSIG ERR;
+ goto c l ean ;
+ } else {
+ sta tus = LDNS STATUS OK;
+ }
+
+ /∗ s e t s i g n a t u r e ∗/
+ sta tus = ldn s cga da ta2 rd f ( cga rd f s , &( cga rd f s−>s i g ) ,
+ s i g bu f , ( int ) s i g l e n , 0) ;
+
+ LDNS FREE( s i g bu f ) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ;
+ }
+
+ /∗ c r e a t e O t h e r Data RDF ∗/
+ sta tus = l dn s c g a r d f s 2 t s i g o d ( cga rd f s , &o th e r da t a rd f ) ;
+
+ i f ( s t a tu s != LDNS STATUS OK) {
+ goto c l ean ;
+ }
+
+ /∗ c r e a t e emp t y mac RDF ∗/
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+ mac rdf = l dn s na t i v e 2 r d f i n t 1 6 da t a (0 , NULL) ;
+
+ i f ( ! mac rdf ) {
+ sta tus = LDNS STATUS MEM ERR;
+ goto c l ean ;
+ }
+ } else {
+ othe r da t a rd f = l dn s na t i v e 2 r d f i n t 1 6 da t a (0 , NULL) ;
+
+ i f ( ! o th e r da t a rd f ) {
+ sta tus = LDNS STATUS MEM ERR;
+ goto c l ean ;
+ }
+
+ sta tus = ldns t s ig mac new(&mac rdf , pkt wire , pkt w i r e l en ,
+ key data , key name rdf , fudge rd f , a lgor i thm rdf ,
+ t ime s i gned rd f , e r r o r r d f , o the r da ta rd f , query mac , t s i g t im e r s o n l y ) ;
+
+ i f ( ! mac rdf ) {
+ goto c l ean ;
+ }
+ }
−−−
− s t a tu s = ldns t s ig mac new(&mac rdf , pkt wire , pkt w i r e l en ,
− key data , key name rdf , fudge rd f , a lgor i thm rdf ,
− t ime s i gned rd f , e r r o r r d f , o the r da ta rd f , query mac , t s i g t im e r s o n l y ) ;
1549 ,1559 c430
+ LDNS FREE( pkt wire ) ;
+ } else i f ( strcasecmp ( algorithm name , ”cga−t s i g . ” ) == 0) {
+ mac rdf = l dn s na t i v e 2 r d f i n t 1 6 da t a (0 , NULL) ;
+ o th e r da t a rd f = l dn s na t i v e 2 r d f i n t 1 6 da t a (0 , NULL) ;
+
+ i f ( ! o th e r da t a rd f | | ! mac rdf ) {
+ sta tus = LDNS STATUS MEM ERR;
+ goto c l ean ;
+ }
+ } else {
+ sta tus = LDNS STATUS CRYPTO TSIG ERR;
−−−
− i f ( ! mac rdf ) {
1562a434 ,435
− LDNS FREE( pkt wire ) ;
−
1584 c457
+ goto end ;
−−−
− return s t a tu s ;
1590 c463
+ l d n s r d f f r e e ( t ime s i gn ed rd f ) ; // s h o u l d b e d e e p f r e e ?
−−−
− l d n s r d f f r e e ( t ime s i gn ed rd f ) ;
1595 ,1598 d467
+
+ end :
+ l d n s c g a r d f s d e e p f r e e ( c g a rd f s ) ;
+ f r e e ( pubk buf ) ;

tsig.h (additions and deletions)

23 ,35 d22
+ #de f i n e CT LEN SIZE 2
+ #de f i n e CT ALGO NAME SIZE 2
+ #de f i n e CT TYPE SIZE 2
+ #de f i n e CT IP TAG SIZE 16
+ #de f i n e CT PARAM LEN SIZE 2
+ #de f i n e CT MODIFIER SIZE CT IP TAG SIZE
+ #de f i n e CT PREFIX SIZE 8
+ #de f i n e CT COLL COUNT SIZE 1
+ #de f i n e CT SIG LEN SIZE 2
+ #de f i n e CT OLD PK LEN SIZE 2
+ #de f i n e CT OLD SIG LEN SIZE 2
+
+
47 ,66 d33
+
+ /∗∗
+ ∗ Co n t a i n s RDFs f o r f i e l d s i n CGA−TSIG o t h e r d a t a
+ ∗/
+ typedef struct l d n s c g a r d f s s t r u c t
+ {
+ ldn s r d f ∗algo name ;
+ l dn s r d f ∗ type ;
+ l dn s r d f ∗ i p t ag ;
+ l dn s r d f ∗modi f i e r ;
+ l dn s r d f ∗ p r e f i x ;
+ l dn s r d f ∗ c o l l c o un t ;
+ l dn s r d f ∗pub key ; // t h e c om p l e t e e n c o d e d S u b j e c t P u b l i c K e y I n f o b l o c k
+ ldn s r d f ∗ e x t f i e l d s ;
+ l dn s r d f ∗ s i g ;
+ l dn s r d f ∗old pub key ;
+ l dn s r d f ∗ o l d s i g ;
+ } l d n s c g a r d f s ;
+
+
95 ,110 d61
+ ∗ \param [ in ] ns s t ru c tu r e with the IP o f the quer i ed remote r e s o l v e r ( for CGA−TSIG)
+ ∗ \param [ in ] n s l en s i z e o f ns ( for CGA−TSIG)
+ ∗ \return LDNS STATUS OK i f t s i g i s co r rec t , e r r o r s ta tu s otherwi se
+ ∗/
+ ldn s s t a t u s l d n s p k t t s i g v e r i f y 2 ( ldns pkt ∗pkt , u i n t 8 t ∗wire , s i z e t w i r e s i z e , const char ∗key name ,

const char ∗key data , l d n s r d f ∗mac ,
+ const struct sockaddr s to rage ∗ns , s i z e t n s l en ) ;
+
+ /∗∗
+ ∗ v e r i f i e s t h e t s i g r r f o r t h e g i v e n p a c k e t and k e y .
+ ∗ The w i r e mus t b e g i v e n t o o b e c a u s e t s i g d o e s n o t s i g n n o r m a l i z e d p a c k e t s .
+ ∗ \param [ i n ] p k t t h e p a c k e t t o v e r i f y
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+ ∗ \param [ i n ] w i r e n e e d e d t o v e r i f y t h e mac
+ ∗ \param [ i n ] w i r e s i z e s i z e o f w i r e
+ ∗ \param [ i n ] k e y n ame t h e name o f t h e s h a r e d k e y
+ ∗ \param [ i n ] k e y d a t a t h e k e y i n b a s e 64 f o rm a t
+ ∗ \param [ i n ] mac o r i g i n a l mac
1 1 9 , 1 3 6 d69
+ ∗ v e r i f i e s t h e t s i g r r f o r t h e g i v e n p a c k e t and k e y .
+ ∗ The w i r e mus t b e g i v e n t o o b e c a u s e t s i g d o e s n o t s i g n n o r m a l i z e d p a c k e t s .
+ ∗ \param [ i n ] p k t t h e p a c k e t t o v e r i f y
+ ∗ \param [ i n ] w i r e n e e d e d t o v e r i f y t h e mac
+ ∗ \param [ i n ] w i r e s i z e s i z e o f w i r e
+ ∗ \param [ i n ] k e y n ame t h e name o f t h e s h a r e d k e y
+ ∗ \param [ i n ] k e y d a t a t h e k e y i n b a s e 64 f o rm a t
+ ∗ \param [ i n ] mac o r i g i n a l mac
+ ∗ \param [ i n ] n s s t r u c t u r e w i t h t h e IP o f t h e q u e r i e d r emo t e r e s o l v e r ( f o r CGA−TSIG )
+ ∗ \param [ i n ] n s l e n s i z e o f n s ( f o r CGA−TSIG )
+ ∗ \param [ i n ] t s i g t i m e r s o n l y mus t b e z e r o f o r t h e f i r s t p a c k e t and p o s i t i v e f o r s u b s e q u e n t p a c k e t s . I f

z e r o , a l l d i g e s t
+ c ompon e n t s a r e u s e d t o v e r i f y t h e mac . I f non−z e r o , o n l y t h e TSIG t i m e r s a r e u s e d t o v e r i f y t h e mac .
+ ∗ \ r e t u r n LDNS STATUS OK i f t s i g i s c o r r e c t , e r r o r s t a t u s o t h e r w i s e
+ ∗/
+ ldn s s t a t u s l d n s p k t t s i g v e r i f y n e x t 2 ( ldns pkt ∗pkt , u i n t 8 t ∗wire , s i z e t w i r e s i z e , const char

∗key name , const char ∗key data , l d n s r d f ∗mac ,
+ const struct sockaddr s to rage ∗ns , s i z e t ns l en , int t s i g t im e r s o n l y ) ;
+
+ /∗∗
1 5 4 , 1 7 7 d86
+ ∗ \param [ i n ] p v t k e y t h e p r i v a t e k e y ( f o r CGA−TSIG )
+ ∗ \param [ i n ] p u b k e y t h e a s s o c i a t e d p u b l i c k e y ( f o r CGA−TSIG )
+ ∗ \param [ i n ] o l d p v t k e y t h e o l d p r i v a t e k e y (NULL i f n o t a p p l i c a b l e ; f o r CGA−TSIG )
+ ∗ \param [ i n ] o l d p u b k e y t h e a s s o c i a t e d o l d p u b l i c k e y (NULL i f n o t a p p l i c a b l e ; f o r CGA−TSIG )
+ ∗ \param [ i n ] f u d g e s e c o n d s o f e r r o r p e r m i t t e d i n t im e s i g n e d
+ ∗ \param [ i n ] a l g o r i t h m n am e t h e name o f t h e a l g o r i t h m u s e d
+ ∗ \param [ i n ] q u e r y ma c i s a d d e d t o t h e d i g e s t i f n o t NULL ( s o NULL i s f o r s i g n i n g q u e r i e s , n o t NULL i s f o r

s i g n i n g a n s w e r s )
+ ∗ \param [ i n ] i p t a g t h e IP t a g (NULL i f n o t a p p l i c a b l e ; f o r CGA−TSIG )
+ ∗ \param [ i n ] m o d i f i e r t h e CGA m o d i f i e r ( f o r CGA−TSIG )
+ ∗ \param [ i n ] p r e f i x t h e n e t w o r k p r e f i x o f t h e h o s t ’ s IPv6 a d d r e s s ( f o r CGA−TSIG )
+ ∗ \param [ i n ] c o l l c o u n t t h e CGA c o l l i s i o n c o u n t ( f o r CGA−TSIG )
+ ∗ \param [ i n ] r e q u e s t o n l y do n o t s i g n b u t o n l y r e q u e s t t h e r e s o l v e r t o s i g n ( f o r CGA−TSIG )
+ ∗ \ r e t u r n s t a t u s (OK i f s u c c e s s )
+ ∗/
+ ldn s s t a t u s l d n s p k t t s i g s i g n 2 ( ldns pkt ∗pkt , const char ∗key name , const char ∗key data ,
+ RSA ∗pvt key , RSA ∗pub key , RSA ∗o ld pvt key , RSA ∗old pub key ,
+ u in t16 t fudge , const char ∗algorithm name , l d n s r d f ∗query mac , u i n t 8 t ∗ ip tag ,
+ u in t 8 t ∗modi f ier , u i n t 8 t ∗pre f i x , s i z e t co l l c ount , int r eque s t on ly ) ;
+
+ /∗∗
+ ∗ c r e a t e s a t s i g r r f o r t h e g i v e n p a c k e t and k e y .
+ ∗ \param [ i n ] p k t t h e p a c k e t t o s i g n
+ ∗ \param [ i n ] k e y n ame t h e name o f t h e s h a r e d k e y
+ ∗ \param [ i n ] k e y d a t a t h e k e y i n b a s e 64 f o rm a t ( i n PEM f o rm a t f o r CGA−TSIG ) , mus t b e n u l l−t e r m i n a t e d
1 8 7 , 2 1 2 d95
+
+ /∗∗
+ ∗ c r e a t e s a t s i g r r f o r t h e g i v e n p a c k e t and k e y .
+ ∗ \param [ i n ] p k t t h e p a c k e t t o s i g n
+ ∗ \param [ i n ] k e y n ame t h e name o f t h e s h a r e d k e y
+ ∗ \param [ i n ] k e y d a t a t h e k e y i n b a s e 64 f o rm a t
+ ∗ \param [ i n ] p v t k e y t h e p r i v a t e k e y ( f o r CGA−TSIG )
+ ∗ \param [ i n ] p u b k e y t h e a s s o c i a t e d p u b l i c k e y ( f o r CGA−TSIG )
+ ∗ \param [ i n ] o l d p v t k e y t h e o l d p r i v a t e k e y (NULL i f n o t a p p l i c a b l e ; f o r CGA−TSIG )
+ ∗ \param [ i n ] o l d p u b k e y t h e a s s o c i a t e d o l d p u b l i c k e y (NULL i f n o t a p p l i c a b l e ; f o r CGA−TSIG )
+ ∗ \param [ i n ] f u d g e s e c o n d s o f e r r o r p e r m i t t e d i n t im e s i g n e d
+ ∗ \param [ i n ] a l g o r i t h m n am e t h e name o f t h e a l g o r i t h m u s e d
+ ∗ \param [ i n ] q u e r y ma c i s a d d e d t o t h e d i g e s t i f n o t NULL ( s o NULL i s f o r s i g n i n g q u e r i e s , n o t NULL i s f o r

s i g n i n g a n s w e r s )
+ ∗ \param [ i n ] i p t a g t h e IP t a g (NULL i f n o t a p p l i c a b l e ; f o r CGA−TSIG )
+ ∗ \param [ i n ] m o d i f i e r t h e CGA m o d i f i e r ( f o r CGA−TSIG )
+ ∗ \param [ i n ] p r e f i x t h e n e t w o r k p r e f i x o f t h e h o s t ’ s IPv6 a d d r e s s ( f o r CGA−TSIG )
+ ∗ \param [ i n ] c o l l c o u n t t h e CGA c o l l i s i o n c o u n t ( f o r CGA−TSIG )
+ ∗ \param [ i n ] r e q u e s t o n l y do n o t s i g n b u t o n l y r e q u e s t t h e r e s o l v e r t o s i g n ( f o r CGA−TSIG )
+ ∗ \param [ i n ] t s i g t i m e r s o n l y mus t b e z e r o f o r t h e f i r s t p a c k e t and p o s i t i v e f o r s u b s e q u e n t p a c k e t s . I f

z e r o , a l l d i g e s t
+ c ompon e n t s a r e u s e d t o c r e a t e t h e q u e r y ma c . I f non−z e r o , o n l y t h e TSIG t i m e r s a r e u s e d t o c r e a t e t h e

q u e r y ma c .
+ ∗ \ r e t u r n s t a t u s (OK i f s u c c e s s )
+ ∗/
+ ldn s s t a t u s l d n s p k t t s i g s i g n n e x t 2 ( ldns pkt ∗pkt , const char ∗key name , const char ∗key data ,
+ RSA ∗pvt key , RSA ∗pub key , RSA ∗o ld pvt key , RSA ∗old pub key ,
+ u in t16 t fudge , const char ∗algorithm name , l d n s r d f ∗query mac , u i n t 8 t ∗ ip tag ,
+ u in t 8 t ∗modi f ier , u i n t 8 t ∗pre f i x , u i n t 8 t co l l c ount , int r eques t on ly , int t s i g t im e r s o n l y ) ;

resolver.c (additions and deletions)

1060 ,1072 c1060 ,1063
+ ldns pkt ∗pkt = NULL;
+ (void ) l dn s r e s o l v e r qu e r y ws (&pkt , r , name , t , c , f l a g s ) ;
+ return pkt ;
+ }
+
+ ldn s s t a t u s
+ ldn s r e s o l v e r qu e r y ws ( ldns pkt ∗∗answer , const l d n s r e s o l v e r ∗r ,
+ const l d n s r d f ∗name , l dn s r r t yp e t , l d n s r r c l a s s c , u in t16 t f l a g s )
+ {
+ ldn s s t a t u s s = l dn s r e s o l v e r q u e r y s t a t u s ( answer , ( l d n s r e s o l v e r ∗) r ,
+ name , t , c , f l a g s ) ;
+ i f ( s != LDNS STATUS OK && s != LDNS STATUS CRYPTO TSIG BOGUS) {
+ ldn s p k t f r e e (∗ answer ) ;
−−−
− l dns pkt∗ pkt = NULL;
− i f ( l d n s r e s o l v e r q u e r y s t a t u s (&pkt , ( l d n s r e s o l v e r ∗) r ,
− name , t , c , f l a g s ) != LDNS STATUS OK) {
− l d n s p k t f r e e ( pkt ) ;
1074 c1065
+ return s ;
−−−
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− return pkt ;
1114 c1105
+ i f ( s t a t != LDNS STATUS OK && sta t != LDNS STATUS CRYPTO TSIG BOGUS) {
−−−
− i f ( s t a t != LDNS STATUS OK) {
1256 c1247
+ i f ( l dn s r e s o l v e r t s i g k eyname ( r ) ) {
−−−
− i f ( l dn s r e s o l v e r t s i g k eyname ( r ) && l dn s r e s o l v e r t s i g k e y d a t a ( r ) ) {
1258 ,1282 c1249 ,1252
+ i f ( l d n s r e s o l v e r t s i g k e y d a t a ( r ) ) {
+ sta tus = l d n s p k t t s i g s i g n ( query pkt ,
+ ldn s r e s o l v e r t s i g k eyname ( r ) ,
+ l d n s r e s o l v e r t s i g k e y d a t a ( r ) ,
+ 300 , l d n s r e s o l v e r t s i g a l g o r i t hm ( r ) , NULL) ;
+ } else {
+ /∗
+ ∗ i f k eyname b u t no k e y d a t a , a s s ume CGA−TSIG r e q u e s t ;
+ ∗ f u n c t i o n w i l l r e t u r n e r r o r i f a l g o r i t h m != ” cga− t s i g . ” ,
+ ∗ s o no e x p l i c i t n e e d t o c h e c k h e r e
+ ∗/
+ sta tus = l d n s p k t t s i g s i g n 2 ( query pkt ,
+ ldn s r e s o l v e r t s i g k eyname ( r ) ,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ 300 , l d n s r e s o l v e r t s i g a l g o r i t hm ( r ) ,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ 0 , 1) ;
+ }
−−−
− s t a tu s = l d n s p k t t s i g s i g n ( query pkt ,
− l dn s r e s o l v e r t s i g k eyname ( r ) ,
− l d n s r e s o l v e r t s i g k e y d a t a ( r ) ,
− 300 , l d n s r e s o l v e r t s i g a l g o r i t hm ( r ) , NULL) ;
1285 c1255
+ return s t a tu s ;
−−−
− return LDNS STATUS CRYPTO TSIG ERR;
1289 c1259
+ return LDNS STATUS CRYPTO TSIG ERR;
−−−
− return LDNS STATUS CRYPTO TSIG ERR;

resolver.h (additions and deletions)

686 ,702 d685
+ ∗ Send a query to a nameserver
+ ∗ \param [ out ] ∗∗answer a po in te r to a ldns pkt po in te r ( i n i t i a l i z e d by th i s func t i on )
+ ∗ \param [ in ] ∗ r operate us ing t h i s r e s o l v e r
+ ∗ ( de sp i t e the const in the dec la ra t i on ,
+ ∗ the struct i s a l t e r ed as a s ide−e f f e c t )
+ ∗ \param [ in ] ∗name query for t h i s name
+ ∗ \param [ in ] ∗ t query for t h i s type (may be 0 , d e f au l t s to A)
+ ∗ \param [ in ] ∗c query for t h i s c l a s s (may be 0 , default to IN)
+ ∗ \param [ in ] f l a g s the query f l a g s
+ ∗
+ ∗ \return l d n s s t a t u s LDNS STATUS OK on succe s s
+ ∗ i f defnames i s t rue the default domain w i l l be added
+ ∗/
+ ldn s s t a t u s l dn s r e s o l v e r qu e r y ws ( ldns pkt ∗∗answer , const l d n s r e s o l v e r ∗r , const l d n s r d f ∗name ,

l dn s r r t yp e t , l d n s r r c l a s s c , u in t16 t f l a g s ) ;
+
+
+ /∗∗

net.c (additions and deletions)

519 c519
+ // s h o u l d n ’ t n s b e c h e c k e d i f NULL?
−−−
−
593 a594
− LDNS FREE( ns ) ;
613 ,614 d613
+ LDNS FREE( ns ) ;
+
628 ,630 c627 ,633
+ sta tu s = l d n s p k t t s i g v e r i f y 2 ( reply , r ep ly byte s , r e p l y s i z e ,
+ ldn s r e s o l v e r t s i g k eyname ( r ) ,
+ l d n s r e s o l v e r t s i g k e y d a t a ( r ) , ts ig mac , ns , n s l en ) ;
−−−
− i f ( ! l d n s p k t t s i g v e r i f y ( reply ,
− r ep ly byte s ,
− r e p l y s i z e ,
− l dn s r e s o l v e r t s i g k eyname ( r ) ,
− l d n s r e s o l v e r t s i g k e y d a t a ( r ) , t s ig mac ) ) {
− s t a tu s = LDNS STATUS CRYPTO TSIG BOGUS;
− }
635 ,636 d637
+
+ LDNS FREE( ns ) ;
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Appendix B CGA generation tool

cga-gen.py

1 #! / u s r / b i n / en v p y t h o n
2 ##########################################################################
3 ## ##
4 ## cga−g en . py − Gen e r a t e a CGA and a s s o c i a t e d p a r am e t e r s u s i n g S c a p y 6 . ##
5 ## ##
6 ## C o p y r i g h t (C) 2013 Marc Bu i j sman ##
7 ## ##
8 ## Th i s p r o g r am i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / o r m o d i f y ##
9 ## i t u n d e r t h e t e rm s o f t h e GNU Ge n e r a l P u b l i c L i c e n s e a s p u b l i s h e d b y ##

10 ## t h e F r e e S o f t w a r e F oun d a t i o n , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , o r ##
11 ## ( a t y o u r o p t i o n ) any l a t e r v e r s i o n . ##
12 ## ##
13 ## Th i s p r o g r am i s d i s t r i b u t e d i n t h e h o p e t h a t i t w i l l b e u s e f u l , ##
14 ## b u t WITHOUT ANY WARRANTY; w i t h o u t e v e n t h e i m p l i e d w a r r a n t y o f ##
15 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . S e e t h e ##
16 ## GNU Gen e r a l P u b l i c L i c e n s e f o r more d e t a i l s . ##
17 ## ##
18 ##########################################################################
19
20 from netaddr . ip import IPNetwork , IPAddress
21 import n e t i f a c e s as ni
22 import b i n a s c i i as ba
23 import errno
24 import argparse
25 from scapy6send . scapy6 import CGAgen
26
27
28 def main ( pfx , pub key , sec , ext , dad , mf , c o l ) :
29 try :
30 pk = open ( pub key , ’ rb ’ ) . read ( )
31 except IOError :
32 print ( ”Could not open f i l e ’ ” + pub key + ” ’ . ” )
33 ex i t ( )
34
35 mod = None
36
37 i f mf != None :
38 try :
39 mod = ba . a2b base64 ( open (mf , ’ rb ’ ) . read ( ) )
40
41 i f l en (mod) != 16 :
42 print ( ”Modi f i e r l ength i s not equal to 16 o c t e t s . ” )
43 ex i t ( )
44 except IOError :
45 mf = None
46 mod = None
47 print ( ”Could not open f i l e ’ ” + mf + ” ’ , generat ing new mod i f i e r in s t ead . ” )
48 except ba . Error :
49 print ( ” Inva l i d mod i f i e r encoding . ” )
50 ex i t ( )
51
52 i f pfx == None :
53 try :
54 a = ni . i f a d d r e s s e s ( ’ eth0 ’ ) [ 1 0 ] [ 0 ] [ ’ addr ’ ]
55 except KeyError :
56 print ( ”Could not get p r e f i x : no IPv6 address found at ’ eth0 ’ ; a l t e r n a t i v e l y pass a p r e f i x in command

l i n e argument . ” )
57 ex i t ( )
58 try :
59 m = ni . i f a d d r e s s e s ( ’ eth0 ’ ) [ 1 0 ] [ 0 ] [ ’ netmask ’ ]
60 except KeyError :
61 print ( ”Could not get p r e f i x : no subnet mask found at ’ eth0 ’ ; a l t e r n a t i v e l y pass a p r e f i x in command

l i n e argument . ” )
62 ex i t ( )
63
64 pfx = s t r ( IPAddress ( i n t ( IPNetwork ( a ) . network ) & in t ( IPNetwork (m) . network ) ) )
65 else :
66 i f pfx [−1] != ’ : ’ :
67 pfx = pfx + ’ : ’
68 i f l en ( pfx ) < 2 or pfx [−2] != ’ : ’ :
69 pfx = pfx + ’ : ’
70
71 try :
72 pk = PubKey(pk )
73 except :
74 print ( ”Could not import pub l i c key . Wrong format ?” )
75 ex i t ( )
76
77 # g e n e r a t e CGA
78 try :
79 ( addr , params ) = CGAgen( pfx , pk , sec , ext , dad , mod , co l )
80 except socket . e r ror , v :
81 i f v [ 0 ] == errno .EPERM:
82 print ( ”Need to be root to perform dup l i c a t e address de t e c t i on . ” )
83 ex i t ( )
84 else :
85 print ( ” Inva l i d p r e f i x . ” )
86 ex i t ( )
87
88 i f addr == None or params == None :
89 print ( ”Unexpected e r r o r . ” )
90 ex i t ( )
91
92 mod = ba . b2a base64 ( params . mod i f i e r )
93
94 print ( ” CGA: ” + addr )
95 sys . stdout . wr i t e ( ” mod i f i e r : ” + mod . r s t r i p ( ) )
96
97 i f mf == None :
98 try :
99 md = open ( ’mod . out ’ , ’w ’ )

100 md. wr i te (mod)
101 print ( ” ( wr i t ten to f i l e ’mod . out ’ ) ” )
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102 except IOError :
103 print ( ” ( could not wr i te to f i l e ’mod . out ’ ) ” )
104 else :
105 print ( ”” )
106
107 sys . stdout . wr i t e ( ” c o l l i s i o n count : ” + s t r ( params . ccount ) )
108
109 i f not dad :
110 print ( ” ( did NOT perform dup l i c a t e address de t e c t i on ) ” )
111 else :
112 print ( ”” )
113
114
115 i f name == ” main ” :
116 par se r = argparse . ArgumentParser ( d e s c r i p t i on=’ Generate a CGA and a s s o c i a t ed parameters us ing Scapy6 . ’ )
117 par se r . add argument ( ’ pk ’ , metavar=’K’ , help=’ f i l e conta in ing the pub l i c key in PEM PKCS8 format ’ )
118 par se r . add argument ( ’−s ’ , dest=’ sec ’ , type=int , cho i c e s=range (8) , d e f au l t =0, help=’ the sec parameter

( d e f au l t s to 0) ’ )
119 par se r . add argument ( ’−d ’ , dest=’ dad ’ , d e f au l t=False , ac t i on=’ s t o r e t r u e ’ , help=’ perform dup l i c a t e address

de t e c t i on i f s e t ( d i sab l ed by de f au l t ) ’ )
120 par se r . add argument ( ’−m’ , dest=’mod ’ , d e f au l t=None , help=’ f i l e conta in ing a 16−byte mod i f i e r in base64

format ( generated by de f au l t ) ’ )
121 par se r . add argument ( ’−p ’ , dest=’ pfx ’ , d e f au l t=None , help=’ the IPv6 p r e f i x to concatenate the generated IPv6

i d e n t i f i e r with ( ex t r a c t s from eth0 by de f au l t ) ’ )
122 par se r . add argument ( ’−c ’ , dest=’ co l ’ , type=int , cho i c e s=range (3) , d e f au l t=None , help=’ c o l l i s i o n count

( generated by de f au l t ) ’ )
123 par se r . add argument ( ’−e ’ , dest=’ ext ’ , d e f au l t =[ ] , nargs=’+’ , help=’ opt i ona l extens ion f i e l d s ( none by

de f au l t ) ’ )
124 args = parse r . pa r s e a r g s ( )
125
126 main ( args . pfx , args . pk , args . sec , args . ext , args . dad , args .mod , args . c o l )
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