XDP-based DNS hot cache

Jannik Samuel Peters
University of Amsterdam
jannik.peters@os3.nl

Abstract—Nameservers are the basis of the Domain
Name System (DNS). Some of them, like public re-
solvers, the root servers or many top-level domain
servers, are queried billions of times each day, requiring
an enormous number of server instances worldwide to
accommodate such a high query volume. The aim of this
project is to investigate the feasibility of using eBPF,
specifically XDP, to answer certain queries directly
from the kernel, reducing the resources, and thus the
cost, needed to operate certain domains or resolvers.
A benefit of using XDP is that it can be applied to
any existing deployment running Linux, regardless of
the nameserver software used. For this project, we
assess the current limitations of growing and modifying
the frame in XDP to accommodate the desired DNS
responses by building a proof of concept. We show
that the limitations vary per device driver, and that
the current state of eBPF and XDP severely limits the
extent to which DINS responses can be sent this way.

Index Terms—eBPF, XDP, DNS, Cache, Rust

I. INTRODUCTION

eBPF and specifically the eXpress Data Path (XDP)
allow for processing of packets in the Linux kernel without
touching the full network stack or user space, potentially
reducing the system load significantly. It is used, amongst
others, for different applications like DDoS protection,
load balancing, or traffic inspection.

Nameservers for the root and top-level domains are
subject to a very high number of requests; more than
50% of these are non-existent domains [1]. This high load
requires operating an increased number of instances to
fulfill this request volume.

XDP seems promising to reduce the burden on the
hardware of the nameservers by answering queries at the
earliest point possible in the software, potentially reducing
the number of instances necessary to serve the queries for
highly queried domains and therefore reducing the cost to
operate them.

IT. RESEARCH QUESTIONS

To guide the project in investigating the feasibility of
an XDP-based DNS hot cache, we define the following
research questions:

o To what extent is it possible to answer DNS queries

from XDP?

o What type of responses can be returned from XDP,

and to what extent?

Willem Toorop
Supervisor
NLnet Labs
willem@nlnetlabs.nl

Luuk Hendriks
Supervisor
NLnet Labs

luuk@nlnetlabs.nl

o Can those responses be learned and cached from (user
space) DNS software, and to what extent?

III. RELATED WORK

Previous work, specifically on responding to DNS
queries from XDP, has been done by my supervisors,
Willem Toorop and Luuk Hendriks from NLnet Labs, and
Tom Carpay. They explored the possibility of augmenting
DNS servers using XDP by implementing programs that
respond with a REFUSED status code [2] or perform Re-
quest Rate Limiting [3], [4], [5]. Other projects used XDP
to modify incoming frame sizes [6], to perform layer 4 load
balancing [7], or to implement DDoS protection [8], [9].
These projects did not use XDP to reply to DNS queries
with data responses or cache responses sent by user space
DNS software. However, there have been attempts at im-
plementing a simple DNS server in XDP that is supposed
to be able to serve A records [10] and at implementing a
caching layer using XDP (just like our project) that wasn’t
completed [11]. Both projects do not work, either because
the code is out-dated or because development ended before
completion. Either way, XDP has changed a lot since the
mentioned attempts, so that the state of the art of using
XDP for DNS caching can be explored further and, more
importantly, documented.

IV. APPROACH

We will evaluate the possibilities of augmenting a DNS
server with an XDP-based hot cache by incrementally
exploring the current state of XDP and its constraints on
the types of responses and sizes that can be cached and
sent this way and implementing a proof of concept.

We start by exploring the different functionalities of
XDP that might support the development of the proto-
type, documenting its capabilities and limitations. Subse-
quently, we implement parsing the query name of incoming
queries from XDP and answering with a fixed response
for a single domain delegation. We also evaluate storage
opportunities for cached responses, such as BPF maps or
data compiled into the program binary.

V. INTRODUCTION TO XDP

To better understand the context of this endeavor and
the planned architecture it is helpful to understand the
integration of XDP into the Linux kernel and its net-
work stack. XDP programs are executed on every frame

reaching the system. In native and offloaded execution
they are executed at the very first point in software,
directly after the network driver has received the frame
(see Figure 1). This allows inspecting and modifying the
frames before other operations, such as allocating the ker-
nel internal representation of network frames (sk_buff),
are performed. The XDP program can then forward the
potentially modified frame to the network stack, redirect
it to a different interface, send it out the interface it came
in, or drop it. However, the program can only act within
the context of the current frame, meaning it cannot create
and send out a completely new one. XDP programs have
direct access to the frame’s data in the driver, providing
the need for it to be laid out linearly in a ”single DMA’ed
page” [12]. This early and direct access to the frame’s data
allows for very high speed handling of network data.

Before attaching an eBPF program to its designated ker-
nel hook, an in-kernel verifier checks the loaded program,
to ensure the safety and stability of the kernel. The verifier
checks for unreachable program paths, invalid memory
access, or other undesired behavior. This has implications
on the code we can write, e.g. we need to carefully check
that each pointer access to the frame’s data is within the
bounds of the current frame.

For a more in-depth introduction to eBPF and XDP,
please refer to the Cilium BPF and XDP Reference
Guide [13] and a paper showing the benefit of using XDP
for high performance network applications [14].

VI. PLANNED ARCHITECTURE

An XDP program will be used to inspect incoming
frames and parse DNS queries to UDP port 53. According
to the parsed query name, the frame will need to grow
to fit and add the appropriate response, as we can only
alter the already existing, incoming frame. eBPF provides
helper functions that allow growing or shrinking a frame
at its head or tail. These functions can fail, depending on
the space requested and available. It’s unclear how much
space is available and will be evaluated in section VIII.

As XDP programs are only executed on received frames,
we need a different program type to read outgoing re-
sponses to DNS queries. eBPF provides a program type
that is executed in the traffic control (tc) subsystem of
the network stack, which allows running tc programs on
outgoing frames. We will use such a program to fill the
cache used by the XDP programs to answer incoming
queries. This cache could either be a (shared) BPF map
(which might have performance drawbacks because of
locking) or static data in the XDP program code.

VII. DEVELOPMENT

The eBPF programs will be written in Rust using the
aya-rs eBPF library [15]. During development, the code
will need to be tested frequently, to ensure a valid eBPF
program, by repeatedly compiling and loading the pro-
gram, and inspecting the eBPF verifier’s error messages.

i
é VMs and containers Control plane

A A
E R
2 Network stack
; ‘ ———
&
-

AF_INET
TCP/UDP
>]
3 IP layer

AF_RAW

Virtual devices

BPF maps

AF_XDP

Queueing
and forwarding

)

V]
Y

Device dri
x«ﬂ XDP H Build sk_buff] evice criver
Drop
Y
B A
[Network hardware J
—_— > - >
Packet data flow Control data flow

i User applications, VMs, containers

D Userspace-accessible sockets
D Network stack processing steps D Parts of the XDP system

Fig. 1: XDP’s integration with the Linux network stack. On
packet arrival, before touching the packet data, the device
driver executes an eBPF program in the main XDP hook. This
program can choose to drop packets; to send them back out the
same interface it was received on; to redirect them, either to
another interface [...] or to userspace through special AF__XDP
sockets; or to allow them to proceed to the regular networking
stack, where a separate TC BPF hook can perform further
processing before packets are queued for transmission. The
different eBPF programs can communicate with each other and
with userspace through the use of BPF maps. To simplify the
diagram, only the ingress path is shown.” (Figure and caption
by Hgiland-Jgrgensen, Brouer, Borkmann, et al. [14] licensed
under CC BY-SA 4.0)

VIII. EXPERIMENTS

The research included multiple experiments. We in-
vestigated the available tailroom and headroom for two
different drivers and experimented with multiple ways of
implementing the parsing and comparison of the query
name.

A. Awvailable Tailroom

To investigate the available tailroom we implemented
a basic XDP program that just sends out the incoming
frame with swapped source and destination addresses and
ports (see listing 1 for an example).

let src_addr_be = (*ipv4hdr).src_addr;
(*ipv4hdr) .src_addr = (*ipv4hdr).dst_addr;
(*ipv4hdr) .dst_addr = src_addr_be;

Listing 1: Swapping IPv4 source and destination

The XDP variant of eBPF programs provides the
function long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md,
int delta), which allows growing or shrinking the frame
at the tail. In this case we grow the frame for different
values for delta. We adjusted the delta repeatedly while
sending the same DNS query until discovering the max-
imum working value documenting the initial frame size,
the delta, and the resulting frame size. We tested different
initial frame sizes using different queries to investigate
if the amount of available space changes. Table I shows
the different initial frame sizes, the according maximum
amount of space available, as well as the resulting frame
sizes. Out of curiosity we also tested if the available space
changes when the initial frame size exceeds the previously
discovered maximum adjusted frame sizes. These larger
initial frame sizes will not occur during normal operation
of the DNS but were an interesting observation of the
capabilities of XDP.

TABLE I: Available space when running as generic XDP attached
to the loopback device

Initial Frame Tailroom Headroom
Size (Resulting Frame Size)

822 +364 Bytes (446) +218 Bytes
84b +362 Bytes (446) +218 Bytes
146¢ 4300 Bytes (446) 1218 Bytes
488 +982 Bytes (1470) +218 Bytes
554 +916 Bytes (1470) 4218 Bytes

@ Query: . NS
bQuery: a. NS
€ Query: <63-character-long-label>. NS

Most of the testing and development was conducted
against the loopback device of the development ma-
chine—a laptop running Manjaro Linux with kernel ver-
sion 6.6.10-1-MANJARO. Unfortunately, the loopback de-
vice doesn’t support native XDP, so we repeated the above
experiment against a network device of a Virtual Machine
using the virtio_net driver and discovering a much larger
leeway to adjust the frame size (see Table II). This shows
that the available tailroom highly depends on the driver
in use.

TABLE II: Available space when running as native XDP using the
virtio__net driver

Initial Frame Tailroom Headroom
Size (Resulting Frame Size)
822 +3426 Bytes (3508) +224 Bytes

@ Query: . NS

B. Awailable Headroom

Adjacent to the evaluation of the available tailroom we
tested for the available headroom. It is supposed to be 256
Bytes [12], but is actually less than that, as the Tables I
and II show. Conveniently, the missing headroom of the
virtio device is exactly 32 Bytes, which is the maximum
size usable for metadata [16]. For unknown reasons, the
available headroom for the loopback device is smaller.
An inconvenience with using the headroom is that the
actual data in the frame needs to be moved forward. The
implementation for that can be a bit tricky as the verifier
only allows copying chunks of a fixed number of Bytes,
not allowing it to be deduced from the actual length of
the frame.

C. Parsing the query name

There were multiple ideas for how to parse and store the
domain name of the incoming query. One was saving the
pointer to the start and the length to access the domain
name for later comparison. However, this didn’t work out
that well as accessing the byte array this way implies illegal
pointer arithmetic, therefore rejecting many attempts at
continuing this path. Attempting to circumvent verifier
limitations regarding bounds checks using tail calls didn’t
help either. In the end we resulted to checking the size of
the query name using multiple static limits and copying
each byte of the query name into a dedicated byte buffer.

IX. PROTOTYPE

The final prototype unfortunately doesn’t include all
the features we intended to achieve. For example, we did
not get to implement the actual caching part in the tc
layer that would read outgoing responses and fill the cache
appropriately. We also didn’t get to respond to queries
with answers from a map that could be filled by a user
space program. This means our prototype can answer
specific hard-coded domains with hard-coded responses.
One seems to need to be very precise in the requirements
during development, as implementing a somewhat variable
program turned out to be very difficult.

X. EVALUATION

As described above, this project didn’t touch on all
the aspects of what we set out to do. We also didn’t
check which drivers are used in the wild to test their
capabilities. Another potential issue during development
was the choice of programming language. It appears that
the Rust compiler creates very different code from the C
compiler, which seems to render some code that worked in
C unusable.

Many of the most-used delegations at the root require
a larger amount of tailroom than was available in the
environment used during this project [17]. For the experi-
mentation with responding to queries using this prototype,
we only tested with a small enough response, namely the
delegation for the top-level domain nl.

Also, the verifier has strict limits to what code it
allows. For instance, it currently only allows 1000000
instructions per program. The verifier also doesn’t allow
loops, meaning they have to be unrolled. This, however,
increases the number of instructions generated by the
compiler enormously when the loops contain complicated
logic or even other loops, so they have to be used with
care.

Using a shared BPF map could have performance impli-
cations compared to static data embedded in the binary, as
there will be a need for locking when accessing map data
from multiple sources. Therefore, it could be beneficial to
only use static data embedded into the program. However,
there could still be a use-case for a program at the tc layer
to cache frequently sent responses. A user space program
could then transform that cache into an XDP program
to replace the existing one, updating the ”cache”. This
could definitely be a valid approach, as it is an atomic
operation to load, unload, or replace an XDP program [12],
meaning no interruption to network traffic—although, for
authoritative nameservers, creating a new program while
changing the zone file of the nameserver could be an easier
approach.

XI. CONCLUSIONS

There have been many obstacles in this endeavor. One of
them was the variability of the desired program, trying to
parse a variable-length payload meant encountering many
complaints of the verifier. We did, however, manage to
find some answers to the research questions defined above.
Yes, it is possible to answer with actual data responses
to certain queries. The extent of the answers is limited
by the space the environment (i.e., device driver) allows
us to use. Any response that would fit into the original
query, i.e., any response that only changes DNS header
information like flags or opcodes, are definitely possible to
produce using XDP. Responses that need additional data,
i.e., responses with Resource Records, need to be small
enough to fit into the available space—a Virtual Machine
with the virtio_net driver will likely have enough space
for most responses. The capabilities of drivers for actual
hardware were not explored.

Another difficulty is the current state of the verifier not
allowing many variable bounds checks with numbers not
hard-coded into the program, but read from the incoming
frame instead. This would make the code easier to write
and read. However, the Rust macro system could probably
be used for writing the many hard-coded bounds checks,
and have them still be easy to read and write, as it could
generate them from shorter code. The other pressing issue
of these constraints is that the program in question cannot
be too generic in its functionality. It has to be fairly precise
in its application and scope.

XII. FUTURE WORK

There is still much work to do in terms of actually
caching responses from a user space DNS software, as
well as finding out the constraints of different real-world
environments (i.e., space constraints of drivers for hard-
ware with native or offloaded XDP support). The proof
of concept could also be enhanced to accommodate the
most queried domains and to allow for easy addition or
modification of response data, as well as supporting partial
responses (e.g., by omitting some glue).

There would also be a public benefit in improving the
eBPF verifier to allow more valid programs, i.e., support-
ing more variable bounds checks. Another improvement
could be made to the documentation or the API for
growing the frame, by adding information about how much
space is available, alleviating the need for trial and error.

REFERENCES

[1] G. Huston. “The root of the DNS revisited.” (Feb. 8,
2023), [Online]. Available: https://blog.apnic.net/
2023/02/08/the-root-of-the-dns-revisited/ (visited
on 01/09,/2024).

[2] L. Hendriks and W. Toorop. “Journeying into XDP:
Part 07 (Jul. 20, 2020), [Online]. Available: https:
//labs.ripe.net /author /luuk hendriks/journeying-
into-xdp-part-0/ (visited on 01/10/2024).

[3] T. Carpay, L. Hendriks, and W. Toorop. “Journey-
ing into XDP part 1: Augmenting DNS.” (Oct. 23,
2020), [Online]. Available: https://labs.ripe.net /
author /tom__carpay / journeying-into-xdp-part-1-
augmenting-dns/ (visited on 01/10/2024).

[4] W. Toorop, T. Carpay, and L. Hendriks. “Journey-
ing into XDP: Fully-fledged DNS service augmen-
tation.” (Feb. 15, 2022), [Online]. Available: https:
//blog.apnic.net/2022/02/15 /journeying-into-xdp-
fully-fledged-dns-service-augmentation/ (visited on
01/10/2024).

[6] T. Carpay, “Server agnostic DNS augmentation
using eBPF,” University of Amsterdam, thesis,
Aug. 17, 2020. [Online]. Available: https://rp.os3.nl/
2019-2020/p05/report.pdf (visited on 01/15/2024).

[6] A.Koolhaas and T. Slokkker, “Defragmenting DNS,
Determining the optimal maximum UDP response
size for DNS,” University of Amsterdam, thesis,
Jul. 5, 2020. [Online]. Available: https://www.
nlnetlabs.nl/downloads/publications /0s3-2020-rp2-
defragmenting-dns.pdf (visited on 01/15/2024).

[7] N. Shirokov and R. Dasineni. “Open-sourcing Ka-
tran, a scalable network load balancer.” (May 22,
2018), [Online]. Available: https://engineering.fb.
com /2018 /05 / 22 / open - source / open - sourcing -
katran-a-scalable-network-load-balancer/ (visited
on 01/15/2024).

[15]

“Deep dive into Facebook’s BPF edge firewall”
(Nov. 2018), [Online]. Available: https:/ /cilium.
io/blog /2018 /11 /20 / fb-bpf-firewall/ (visited on
02/07/2024).

A. Fabre. “L4Drop: XDP DDoS mitigations.”
(Nov. 28, 2018), [Online]. Available: https://blog.
cloudflare . com / l14drop - xdp - ebpf - based - ddos -
mitigations/ (visited on 02/07/2024).

Zebaz, Xpress DNS - experimental XDP DNS server,
Oct. 4, 2021. [Online]. Available: https://github.
com/zebaz/xpress-dns (visited on 01/15/2024).

M. MICHISHITA, BDC - eBPF DNS cache, May 13,
2022. [Online]. Available: https: / / github . com /
aztecher/bdc/ (visited on 01/15/2024).

“BPF and XDP reference guide — program types.”
(2024), [Online]. Available: https://docs. cilium .
io / en / latest / bpf / progtypes / #xdp (visited on
02/07/2024).

“BPF and XDP reference guide.” (2024), [Ounline].
Available: https://docs.cilium.io /en /latest / bpf/
(visited on 02/09/2024).

T. Hgiland-J@rgensen, J. D. Brouer, D. Borkmann,
et al., “The express data path: Fast programmable
packet processing in the operating system kernel,”
in Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Tech-
nologies, ser. CONEXT ’18, Heraklion, Greece: As-
sociation for Computing Machinery, 2018, pp. 54—
66, 1SBN: 9781450360807. por: 10.1145/3281411.
3281443. [Online]. Available: https://doi.org/10.
1145/3281411.3281443.

Aya, Aya is an eBPF library for the Rust program-
ming language, built with a focus on developer expe-
rience and operability. Version 0.11.0, 2021. [Online].
Available: https://github.com/aya-rs/aya (visited
on 02/09/2024).

Linuz kernel source tree, 2024. [Online]. Available:
https: / / github . com / torvalds / linux (visited on
02/07/2024).

“Root zone file” (2024), [Online]. Available: https:
//www.internic.net /domain /root.zone (visited on
02/10/2024).

N

(S N

N o

APPENDIX A
SELECTION OF CODE

For brevity the generated scaffolding code is not included, only own files which have changed will be shown. The
full project structure can either be obtained from https://gitlab.os3.nl/jpeters/rpl-code-xdp-dns-cache or
https://github.com/mozzieongit/xdp-dns-cache, or generated using cargo generate --name xdp-dns-cache -d progr
am_type=xdp https://github.com/aya-rs/aya-template.

A. Owverview of the file structure

-/
| Cargo.toml
| Makefile
| xdp-dns-cache/
Cargo.toml
src/
Lg,main.rs
| xdp-dns-cache-common/
Cargo.toml
src/
| _1ib.rs
| xdp-dns-cache-ebpf/
Cargo.toml
rust-toolchain.toml
src/
csum.rs
cursor.rs
dns.rs
helpers.rs
main.rs
metadata.rs
| _xtask/
Cargo.toml
src/
build_ebpf.rs
main.rs

run.rs

Fig. 2: Overview of the project’s file structure (excluding lock files)

B. Makefile

.PHONY: release debug run run-debug

release:
cargo xtask build-ebpf --release
cargo build --release

debug:
RUSTFLAGS="--cfg include_info" cargo xtask build-ebpf
RUSTFLAGS="--cfg include_info" cargo build

run: release
sudo RUST_LOG=info target/release/xdp-dns-cache --iface lo

run-debug: debug
sudo RUST_LOG=info target/debug/xdp-dns-cache --iface lo

Listing 2: Makefile

~w

o

© o N o

21
22
23

24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53

C. xdp-dns-cache/src/main.rs

use
use
use
use
use
use
use
use

anyhow: :Context;

aya::maps: :ProgramArray;
aya::programs: :{Xdp, XdpFlags};
aya::{include_bytes_aligned, Bpf};
aya_log: :BpfLogger;

clap: :Parser;

log::{info, warn, debug};
tokio::signal;

#[derive (Debug, Parser)]
struct Opt {

#[clap (short, long, default_value = "eth0")]
iface: String,

#[tokio: :main]
async fn main() -> Result<(), anyhow::Error> {

let opt = Opt::parse();
env_logger::init();

// Bump the memlock rlimit. This is needed for older kernels that don't use the
// new memcg based accounting, see https://lum.net/Articles/837122/
let rlim = libc::rlimit {
rlim_cur: libc::RLIM_INFINITY,
rlim_max: libc::RLIM_INFINITY,
g
let ret = unsafe { libc::setrlimit(libc::RLIMIT_MEMLOCK, &rlim) };
if ret !'= 0 {
debug! ("remove limit on locked memory failed, ret is: {}", ret);

// This will include your eBPF object file as raw bytes at compile-time and load it at

// runtime. This approach is recommended for most real-world use cases. If you would

// like to specify the eBPF program at runtime rather than at compile-time, you can

// reach for “Bpf::load_file instead.

#[cfg(debug_assertions)]

let mut bpf = Bpf::load(include_bytes_aligned! (
"../../target/bpfel-unknown-none/debug/xdp-dns-cache"

))7;

#[cfg(not (debug_assertions))]

let mut bpf = Bpf::load(include_bytes_aligned! (
"../../target/bpfel-unknown-none/release/xdp-dns-cache"

D)5

if let Err(e) = Bpflogger::init(&mut bpf) {
// This can happen if you remove all log statements from your eBPF program.
warn! ("failed to initialize eBPF logger: {}", e);

let flags = O;

let mut prog_array = ProgramArray::try_from(bpf.take_map("JUMP_TABLE") .unwrap())?;
let prog_1: &mut Xdp = bpf.program_mut ("xdp_parse_dname") .unwrap() .try_into()7;
prog_1.1oad()7;

prog_array.set (1, prog_1.fd().unwrap(), flags)?;

let prog_2: &mut Xdp = bpf.program_mut ("xdp_check_cache") .unwrap() .try_into()7;
prog_2.1load()7;
prog_array.set(2, prog_2.fd().unwrap(), flags)?;

60
61
62
63
64

65

66
67
68
69
70
71

72

~w

o

© o N o

21
22
23

24

26
27
28
29
30
31
32
33
34

let program: &mut Xdp = bpf.program_mut("xdp_dns_cache") .unwrap().try_into()7;

program.load()?;

prog_array.set(0, program.fd() .unwrap(), flags)?;

program.attach(&opt.iface, XdpFlags::default())

.context("failed to attach the XDP program with default flags - try changing XdpFlags::default() to

< XdpFlags::SKB_MODE")?;
info! ("Waiting for Ctrl-C...");
signal::ctrl_c().await?;

info! ("Exiting...");

0k(0))

D. zdp-dns-cache-ebpf/Cargo.toml

Listing 3: xdp-dns-cache/src/main.rs

[packagel

name = "xdp-dns-cache-ebpf"

version = "0.1.0"

edition = "2021"

[dependencies]

aya-bpf = { git = "https://github.com/aya-rs/aya" }
aya-log-ebpf = { git = "https://github.com/aya-rs/aya" }
xdp-dns-cache-common = { path = "../xdp-dns-cache-common" }
network-types = "0.0.5"

c2rust-bitfields = { version = "0.18.0", features = ["no_std"] }
[[bin]]

name = "xdp-dns-cache"

path = "src/main.rs"

[profile.dev]

opt-level = 3

debug = false

debug-assertions = false

overflow-checks = false
1lto =
panic =

true

"abort"
incremental = false
codegen-units = 1
rpath = false

[profile.releasel
1lto =
panic =

true
"abort"

codegen-units = 1

[workspace]
members = []

Listing 4: xdp-dns-cache-ebpf/Cargo.toml

~w

o

© o N o

10

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53

E. zdp-dns-cache-ebpf/src/main.rs

#![no_std]

#![no_main]
use core::mem;

mod dns;

use dns::*;

mod csum;

mod helpers;

use helpers::*;

mod cursor;

use cursor::Cursor;
mod metadata;

use metadata::*;

use aya_bpf::{
bindings: :xdp_action,
helpers::*,
macros: :{map, xdp},
maps: :ProgramArray,
programs: : XdpContext,

};

use network_types::{
eth::{EthHdr, EtherTypel},
ip::{IpProto, Ipv4Hdr, Ipv6Hdr},
udp: :UdpHdr,

};

// make a simple wrapper around aya_log_ebpf::info to only include it if the cfg flag
// "include_info" is set: t.e. $ RUSTFLAGS="--cfg include_info" cargo ztask build-ebpf
// This is necessary as different kernels have different limits and including logging adds
// many many instructions to the resulting BPF bytecode. This allows disabling logging at
// compile-time without going through the code to delete every logging statement.
macro_rules! info {
($($arg:tt)*) => {
#[cfg(include_info)]
{
aya_log_ebpf::info! ($($arg)*);

s

const MAX_SENSIBLE_LABEL_COUNT: u8 = 20;
const CACHED_QNAME_SIZE: usize = 32;

#[map (name = "JUMP_TABLE")]
static mut JUMP_TABLE: ProgramArray = ProgramArray::with_max_entries(8, 0);

#[allow(dead_code)]
const XDP_DNS_CACHE: u32 = 0;
const XDP_PARSE_DNAME: u32
const XDP_CHECK_CACHE: u32

1;
2;

// answer for nl. NS IN including compression

// const ANSWER_LEN: usize = 58;

// const NSCOUNT: ul6 = 3;

// const ARCOUNT: ul6 = 0;

// const ANSWER_DATA: [u8; ANSWER_LEN] = [

// 0zc0, 0zOc, 0x00, 0xz02, 0xz00, 0xz01, 0xz00, 0z02, Oza3, 0x00, 0x00, 0xla, 0x03, Ozbe, 0xz73, 0xz31,

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

103

111
112
113
114
115
116
117
118
119

120

// 0z03, 0z64, Oxbe, 0x73, OxcO, 0zxOc, OzcO, OzOc, 0xz00, 0x02, 0x00, 0x01,

// 0z00, 0xz06, 0x03, Oxbe, 0x73, 0x33, OzcO0, O0z24, OxzcO, OxOc, 0x00, 0x02, 0x00, 0z01, 0z00, 0z02,
// Oza3, 0xz00, 0x00, 0x06, 0x03, Oz6e, 0z73, 0xz34, OzcO, 0x24,
/7 15

// answer for nl. NS IN including compression and glue

const ANSWER_LEN: usize = 201;

const NSCOUNT: ul6é = 3;

const ARCOUNT: ulé = 7;

const ANSWER_DATA: [u8; ANSWER_LEN] = [
0xc0, 0xOc, 0x00, 0x02, 0x00, 0x01, 0x00, 0x02, 0Oxa3, 0x00, 0x00,
0x03, 0x64, Ox6e, 0x73, 0xcO, 0xOc, 0OxcO, 0xOc, 0x00, 0x02, 0x00,
0x00, 0x06, 0x03, Ox6e, 0x73, 0x33, 0xcO, 0x24, 0xcO, 0xOc, 0x00,
0xa3, 0x00, 0x00, 0x06, 0x03, Ox6e, 0x73, 0x34, 0xcO, 0x24, 0xcO,
0x00, 0x02, 0Oxa3, 0x00, 0x00, 0x04, Oxc2, 0x00, Oxlc, 0x35, 0xcO,
0x00, 0x02, 0Oxa3, 0x00, 0x00, 0x04, 0Oxc2, 0x00, 0x19, 0x18, 0xcO,
0x00, 0x02, 0xa3, 0x00, 0x00, 0x04, 0xb9, 0x9f, 0xc7, 0xc8, 0xcO,
0x00, 0x02, Oxa3, 0x00, 0x00, 0x10, 0x20, 0x01, 0x06, 0x78, 0x00,
0x00, 0x00, 0x00, 0x28, 0x00, 0x53, OxcO, 0x36, 0x00, Oxlc, 0x00,
0x00, 0x10, 0x20, 0x01, 0x06, 0x78, 0x00, 0x20, 0x00, 0x00, 0x00,
0x00, 0x24, 0xcO, 0x48, 0x00, Oxlc, 0x00, 0x01, 0x00, 0x02, Oxa3,
0x01, 0x0Oa, 0x80, Oxac, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x29, 0x04, 0xd0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

1;

#[panic_handler]
fn panic(_info: &core::panic::PanicInfo) -> ! {
unsafe { core::hint::unreachable_unchecked() }

#[xdp]
pub fn xdp_dns_cache(ctx: XdpContext) -> u32 {
match try_xdp_dns_cache(ctx) {
Ok(ret) => ret,
Err(_) => xdp_action::XDP_ABORTED,

#[inline (always)]
fn try_xdp_dns_cache(ctx: XdpContext) -> Result<u32, (0> {
let ethhdr: *mut EthHdr = ptr_at_mut(&ctx, 0)7;

match unsafe { (*ethhdr).ether_type } {
EtherType::Ipv4 => do_ipv4(ctx),
EtherType: :Ipv6 => do_ipv6(ctx),
_ => Ok(xdp_action::XDP_PASS),

#[inline (always)]
fn do_ipv6(ctx: XdpContext) -> Result<u32, (> {
Ok (xdp_action: : XDP_PASS)

#[inline (always)]
fn do_ipv4(ctx: XdpContext) -> Result<u32, ()> {
let ipv4hdr: *mut Ipv4Hdr = ptr_at_mut(&ctx, EthHdr::LEN)?;

let source_addr = unsafe { u32::from_be((*ipv4hdr) .src_addr) 1};

match source_addr {

0x0a, 0x03,
0x01, 0x00,
0x02, 0x00,
0x20, 0x00,
0x36, 0x00,
0x48, 0x00,
0x20, 0x00,
0x2c, 0x00,
0x01, 0x00,
0x00, 0x00,
0x00, 0x00,
0x00, 0x02,

Ox6e, 0x73,
0x02, Oxa3,
0x01, 0x00,
0x01, 0x00,
0x01, 0x00,
0x01, 0x00,
Ox1lc, 0x00,
0x00, 0x01,
0x02, Oxa3,
0x00, 0x00,
0x10, 0x26,
0x00, 0x00,

0z00, 0x02, 0Oza3, 0z00,

0x31,
0x00,
0x02,
0x01,
0x01,
0x01,
0x01,
0x94,
0x00,
0x00,
0x20,
0x00,

121
122
123

124

138
139
140
141
142
143
144

145

172
173
174
175
176
177
178
179

180

// source == 127.0.0.2 [] 10.1.1.1
0x7£000002 | 0x0a010101 => {}
=> return Ok(xdp_action::XDP_PASS),

if is_udp_v4(ipv4hdr) {
return do_udp(ctx, EthHdr::LEN + Ipv4Hdr::LEN);
I8

Ok (xdp_action: : XDP_PASS)

#[inline (always)]
fn is_udp_v4(ipv4hdr: *const Ipv4Hdr) -> bool {
unsafe { (*ipvé4hdr).proto == IpProto::Udp }

#[inline (always)]
fn is_udp_v6(ipv6hdr: *const Ipv6Hdr) -> bool {
unsafe { (*ipv6hdr).next_hdr == IpProto::Udp }

#[inline (always)]

fn do_udp(ctx: XdpContext, header_offset: usize) -> Result<u32, (> {
let udphdr: *mut UdpHdr = ptr_at_mut(&ctx, header_offset)?;
let dest_port = ul6::from_be(unsafe { (xudphdr).dest });

if dest_port == 53 {

return do_dns(ctx, header_offset + UdpHdr::LEN);
} else {

return Ok(xdp_action::XDP_PASS);

#[inline (always)]
fn do_dns(ctx: XdpContext, header_offset: usize) -> Result<u32, (> {
info! (&ctx, "do_dns");
let dnshdr: *mut DnsHdr = ptr_at_mut(&ctx, header_offset)?;
unsafe {
info! (
&ctx,

"QR:{}, OPCODE:{}, AA:{}, TC:{}, RD:{}, RA:{}, Z:{}, AD:{}, CD:{}, RCODE:{}, QDCOUNT:{}, ANCOUNT:{},

— NSCOUNT:{}, ARCOUNT:{}",
(*dnshdr) .qr (),
(*dnshdr) .opcode (),
(*dnshdr) .aa(),
(*dnshdr) .tc(),
(*dnshdr) .xrd (),
(*dnshdr) .ra(),
(*dnshdr) .z(),
(*dnshdr) .ad (),
(*dnshdr) .cd(),
(*dnshdr) .rcode(),
(*dnshdr) .qdcount (),
(*dnshdr) .ancount (),
(*dnshdr) .nscount (),
(*dnshdr) .arcount (),

unsafe {

181
182
183
184
185
186
187
188

189

199
200
201
202
203
204
205

206

214
215
216
217
218
219
220
221
222

223

234
235
236
237
238
239
240

241

let dnshdr: &DnsHdr = &*(dnshdr);
if dnshdr.qr() != 0

|| dnshdr.qdcount() != 1
|| dnshdr.ancount() != 0
|| dnshdr.nscount() != 0

|| dnshdr.arcount() > 1

{
info! (&ctx, "Aborting this message, the DNS query is bogus");
return Ok(xdp_action::XDP_ABORTED) ;
¥
}
unsafe {
// WARNING: delta for adjust_meta must be <= 32 and a multiple of 4
if bpf_xdp_adjust_meta(ctx.ctx, -(mem::size_of::<MetaData>() as i32)) != 0 {
info! (&ctx, "Could not adjust metadata");
return Ok(xdp_action: :XDP_PASS);
¥
}

if ctx.metadata() + mem::size_of::<MetaData>() > ctx.metadata_end() {
info! (&ctx, "Adjust metadata didn't work? The struct doesn't fit");
return Ok(xdp_action::XDP_PASS);

let meta: *mut MetaData = ctx.metadata() as *mut MetaData;

unsafe {
(*meta) .dname_offset = (header_offset + DnsHdr::LEN) as u8;

if header_offset == EthHdr::LEN + Ipv4Hdr::LEN + UdpHdr::LEN {
let ipv4hdr: *mut Ipv4Hdr = ptr_at_mut(&ctx, EthHdr::LEN)?;
let udphdr: *mut UdpHdr = ptr_at_mut(&ctx, EthHdr::LEN + Ipv4Hdr::LEN)?;

change_len_and_checksums_v4(&ctx, ipvé4hdr, udphdr, ANSWER_LEN as ul6)7;
// } else if header offset == EthHdr::LEN + Ipv6Hdr::LEN + UdpHdr::LEN {

V4 let ipvbhdr: *mut Ipv6Hdr = ptr_at_mut (&ctx, EthHdr::LEN)?;
/7 let udphdr: *mut UdpHdr = ptr_at_mut(&ctz, EthHdr::LEN + Ipv6Hdr::LEN)?;
// change_len_and_checksums_v6 (&ctz, ipv6hdr, udphdr, ANSWER_LEN as ul6)?;
} else {
return Err(());
}
let _ = JUMP_TABLE.tail_call(&ctx, XDP_PARSE_DNAME) ;
}
Ok (xdp_action: :XDP_PASS)
}
#[zdp]

pub fn xdp_parse_dname(ctx: XdpContext) -> u32 {
info! (&ctx, "Hello tailcall :)");
if ctx.metadata() + 1 > ctx.data() {
info! (&ctx, "there is no metadata available in xdp_parse_dname");
return xdp_action::XDP_PASS;

let data_end = ctx.data_end();
let metadata: &mut MetaData = unsafe { &mut *(ctx.metadata() as *mut MetaData) };

242
243
244
245
246
247

248

261
262
263
264
265
266
267

268

277
278
279
280
281
282
283
284

285

295
296
297
298
299
300
301

302

if ctx.metadata() + mem::size_of::<MetaData>() > ctx.data() {
info! (&ctx, "we goofed with the metadata");
return xdp_action::XDP_PASS;

let proto: EtherType;
let dnshdr: &mut DnsHdr;
let dnsdata_off: usize;
let v4_off = Ipv4Hdr::LEN + EthHdr::LEN + UdpHdr::LEN + DnsHdr::LEN;
let v6_off = Ipv6Hdr::LEN + EthHdr::LEN + UdpHdr::LEN + DnsHdr::LEN;
if metadata.dname_offset as usize == v4_off {

proto = EtherType: :Ipv4;

dnsdata_off = v4_off;

unsafe {
dnshdr = &mut *((ctx.data() + EthHdr::LEN + Ipv4Hdr::LEN + UdpHdr::LEN) as *mut DnsHdr)
}
} else if metadata.dname_offset as usize == v6_off {

proto = EtherType: :Ipv6;
dnsdata_off = v6_off;
unsafe {

dnshdr = &mut *((ctx.data() + EthHdr::LEN + Ipv6Hdr::LEN + UdpHdr::LEN) as *mut DnsHdr)

¥

} else {
info! (&ctx, "ether_type doesn't match");
return xdp_action::XDP_PASS;

let mut cursor: Cursor = Cursor::new(ctx.data() + dnsdata_off);
let mut buf: [u8; CACHED_QNAME_SIZE] = [0; CACHED_QNAME_SIZE];

// if dns query is at least X bytes long

// let len = 5; // .

// // let len = 7; // no need to check for single character long TLDs (they don't exist)

// let len 8; // nl. / de. / ...

// let len = 9; // com. / ...

// let len = 10; // name. / ...

// NOTE: we might be able to use a for loop (unrolled possibly) to reduce the amount of code

// TODO: maybe ignore the need for class and type in the bounds/numbers below?
if ctx.data() + dnsdata_off + 18 < ctx.data_end() {
// at least a query to nlnetlabs.nl. fits
if let Err(action) = parse_gname(&ctx, 14, &mut buf, &mut cursor) {
return action;
}
} else if ctx.data() + dnsdata_off + 10 < ctx.data_end() {
// at least a query to mame. fits
if let Err(action) = parse_gname(&ctx, 6, &mut buf, &mut cursor) {
return action;
¥
} else if ctx.data() + dnsdata_off + 9 < ctx.data_end() {
// at least a query to com. fits
if let Err(action) = parse_gname(&ctx, 5, &mut buf, &mut cursor) {
return action;
¥
} else if ctx.data() + dnsdata_off + 8 < ctx.data_end() {
// at least a query to nl. fits
if let Err(action) = parse_gname(&ctx, 4, &mut buf, &mut cursor) {
return action;
¥
} else if ctx.data() + dnsdata_off + 5 < ctx.data_end() {
// at least a query to . fits
if let Err(action) = parse_gname(&ctx, 1, &mut buf, &mut cursor) {

303
304
305
306
307
308
309

310

338
339
340
341
342
343
344

345

return action;
}
} else {
info! (&ctx, "dns query not long enough");
return xdp_action::XDP_ABORTED;

}

unsafe {
let s = core::str::from_utf8_unchecked(&buf) ;
info! (&ctx, "buf (unchecked utf8): {}", s);

}

if cursor.pos + 2 > ctx.data_end() {
info! (&ctx, "dns query not long enough");
return xdp_action::XDP_ABORTED;

let q_type: ul6 = ul6::from_be(unsafe { *(cursor.pos as *const ul6) 1});
cursor.pos += 2;

if cursor.pos + 2 > ctx.data_end() {
info! (&ctx, "dns query not long enough");
return xdp_action::XDP_ABORTED;

let g_class: ul6 = ul6::from_be(unsafe { *(cursor.pos as *const ul6) });
cursor.pos += 2;

info! (&ctx, "q_type: {}, class: {}", q_type, q_class);

if buf[0..4] == [0x02, 0x6e, Ox6c, 0x00] {
info! (&ctx, "yes it's for nl.");

match proto {
EtherType: :Ipv6 => {
// if let Ok(ipu6hdr) = ptr_at_mut(&ctz, EthHdr::LEN) {
V4 swap_ipv6_addr (ipv6hdr) ;
/7 }

// if let Ok(udphdr) = ptr_at_mut (&ctz, EthHdr::LEN + Ipv6Hdr::LEN) {
// swap_udp_ports (udphdr) ;
/7 }
}
EtherType: :Ipvd => {
if let Ok(ipv4hdr) = ptr_at_mut(&ctx, EthHdr::LEN) {
swap_ipv4_addr (ipv4hdr) ;

if let Ok(udphdr) = ptr_at_mut(&ctx, EthHdr::LEN + Ipv4Hdr::LEN) {
swap_udp_ports (udphdr) ;

_ => return xdp_action::XDP_PASS,

if let Ok(ethhdr) = ptr_at_mut(&ctx, 0) {
swap_eth_addr (ethhdr) ;

// dnshdr.set_tc(1);
dnshdr.set_qr(1);

364
365
367
368
369
370

371

381
382
383
384
385
386
387
388
389

390

399
400
401
402
403
404
405

406

414
415
416
417
418
419
420
421
422
423

424

dnshdr.set_ra(0);
dnshdr.set_nscount (NSCOUNT) ;
dnshdr.set_arcount (ARCOUNT) ;

// ignore EDNSO and just overwrite with answer
if cursor.pos + ANSWER_LEN < ctx.data_end() {
for i in O..ANSWER_LEN {
unsafe {
*(cursor.pos as *mut u8) = ANSWER_DATA[i];
cursor.pos += 1;

// nullify the rest
for _i in 0..100 {
if cursor.pos < ctx.data_end() {
unsafe {
*(cursor.pos as *mut u8) = 0;
cursor.pos += 1;

}
¥
}
}
return xdp_action::XDP_TX;
}
unsafe {
let _ = JUMP_TABLE.tail_call(&ctx, XDP_CHECK_CACHE);
info! (&ctx, "tail call failed");
}
xdp_action: :XDP_PASS
¥
#[zdp]

pub fn xdp_check_cache(ctx: XdpContext) -> u32 {
info! (&ctx, "Hello second tailcall :)");

xdp_action: :XDP_PASS
}
#[inline (always)]
fn parse_gname (
ctx: &XdpContext,
max_bytes: usize,
buf: &mut [u8],

cursor: &mut Cursor,
) -> Result<(), u32> {

let
let
let
for

mut buf_index = 0;

mut label_bytes_left = 0;

mut reached_root_label = false;

_i in 0..=max_bytes {

let char: u8 = unsafe { *(cursor.pos as *const u8) 1};

info! (ctx, "{}", char);

cursor.pos += 1;

if char == 0 {
info! (ctx, "reached root label");
reached_root_label = true;

break;

if label_bytes_left == 0 {
if (char & 0xCO) == 0xCO {

425
426
427
428
429
430

431

441
442
443
444
445
446
447
448
449

450

AW N

o

© o N o

21
22
23
24
25
26
27
28

29

info! (ctx, "complabel");
// compression label; not checking validity of reference
// compression label would be the last label of dname
break;
} else if (char & 0xCO) !'= 0 {
info! (ctx, "unknown label");
return Err(xdp_action::XDP_PASS);
} else {
info!(ctx, "label len: {}", char);
label_bytes_left = char + 1; // +1 because of length itself

buf [buf_index] = char;
buf_index += 1;
label_bytes_left -= 1;

info! (ctx, "chars left: {}", label_bytes_left);

if !reached_root_label {
info! (ctx, "qname was not read appropriately");
return Err(xdp_action::XDP_PASS);

0k(0O))

Listing 5: xdp-dns-cache-ebpf/src/main.rs

F. xzdp-dns-cache-ebpf/src/dns.rs

#![allow(dead_code)]
use c2rust_bitfields::BitfieldStruct;

pub const DNS_PORT: ul6 = 53;
pub const RR_TYPE_OPT: ul6 = 41;
pub const RCODE_REFUSED: u8 = 5;

#[repr(C, align(1))]

#[derive (BitfieldStruct)]

pub struct DnsHdr {
pub id: ui6,
#[bitfield(name = "qr", ty = "u8", bits = "7..=7")]
#[bitfield(name = "opcode", ty = "u8", bits = "3..=6")]
#[bitfield(name = "aa", ty = "u8", bits = "2..=2")]
#[bitfield(name = "tc", ty = "u8", bits = "1..=1")]
#[bitfield(name = "rd", ty = "u8", bits = "0..=0")]
#[bitfield(name = "ra", ty = "u8", bits = "15..=15")]
#[bitfield(name = "z", ty = "u8", bits = "14..=14")]
#[bitfield(name = "ad", ty = "u8", bits = "13..=13")]
#[bitfield(name = "cd", ty = "u8", bits = "12..=12")]
#[bitfield(name = "rcode", ty = "u8", bits = "8..=11")]
codes_and_flags: [u8; 2],
pub gqdcount: uilé,
pub ancount: uilé,
pub nscount: uilé,
pub arcount: ulé6,

impl DnsHdr {

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

[SE S)

© w N o

pub

pub

pub

pub

pub

pub

pub

pub

pub

pub

pub

const LEN: usize

core: :mem::size_of: :<DnsHdr>();

fn id(&self) -> ul6 {

ul6: :from_be(self.

fn gdcount (&self)

ul6: :from_be(self.

fn ancount (&self)

ul6::from_be(self.

fn nscount (&self)

ul6: :from_be(self.

fn arcount (&self)

ul6: :from_be(self.

id)

-> ul6 {
qdcount)

-> ul6 {
ancount)

-> ul6 {
nscount)

-> ul6 {
arcount)

fn set_id(&mut self, id: ul6) {

self.id = ul6::to_

fn set_qgdcount (&mut
self.qdcount = ul6::

fn set_ancount (&mut
self.ancount = ul6::

fn set_nscount (&mut
self.nscount = ul6::

fn set_arcount (&mut
self.arcount = ul6::

be (id)

self, count: ul6) {
to_be(count)

self, count: ul6) {
to_be(count)

self, count: ul6) {
to_be(count)

self, count: uil6) {
to_be(count)

Listing 6: xdp-dns-cache-ebpf/src/dns.rs

G. xdp-dns-cache-ebpf/src/metadata.rs

// This struct needs to be a multiple of 4 bytes in size and at maz 32 bytes in size

// Check in kernel code in file include/net/xdp.h:zdp_metalen_invalid
#[repr(C)]
pub struct MetaData {

pub
pub
pub
pub

dname_offset: u8,
1bll_offset: u8,
1bl2_offset: u8,
1bl3_offset: u8,

Listing 7: xdp-dns-cache-ebpf/src/metadata.rs

~w

o

© o N o

21
22
23

24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49
50
51
52

53

H. zdp-dns-cache-ebpf/src/helpers.rs

use aya_bpf::{bindings::xdp_action, helpers::bpf_xdp_adjust_tail, programs: :XdpContext};

use aya_log_ebpf::info;
use core::mem;
use network_types::{eth::EthHdr, ip::Ipv4Hdr, udp::UdpHdr};

use crate::csum::*;

#[inline (always)]
pub fn swap_udp_ports(udphdr: *mut UdpHdr) {
unsafe {
let src_port_be = (*udphdr).source;
(*udphdr) .source = (*udphdr) .dest;
(*udphdr) .dest = src_port_be;

}
¥
#[inline (always)]
pub fn swap_eth_addr(ethhdr: *mut EthHdr) {
unsafe {
let src_addr_be = (*ethhdr).src_addr;
(*ethhdr) .src_addr = (*ethhdr).dst_addr;
(*ethhdr) .dst_addr = src_addr_be;
}
}
#[inline (always)]

pub fn swap_ipv4_addr(ipvéhdr: *mut Ipv4Hdr) {
unsafe {
let src_addr_be = (*ipv4hdr).src_addr;
(*ipvé4hdr) .src_addr = (*ipv4hdr).dst_addr;
(*ipv4hdr) .dst_addr = src_addr_be;
g

#[allow(dead_code)]

#[inline (always)]

pub fn ptr_at<T>(ctx: &XdpContext, offset: usize) -> Result<*const T, (0> {
let start = ctx.data(Q);
let end = ctx.data_end();
let len = mem::size_of::<T>();

if start + offset + len > end {

return Err(());

}

Ok ((start + offset) as *const T)
}
#[inline (always)]

pub fn ptr_at_mut<T>(ctx: &XdpContext, offset: usize) -> Result<*mut T, (0> {

let start = ctx.data();
let end = ctx.data_end();
let len = mem::size_of::<T>();

if start + offset + len > end {

return Err(());

Ok((start + offset) as *mut T)

60
61
62
63
64
65
66
67
68
69
70
71
72

73

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

103

#[allow(dead_code)]

#[inline (always)]

pub fn csum_replace_u32(mut check: ul6, old: u32, new: u32) -> ul6 {
check = csum_replace(check, (old >> 16) as ul6, (new >> 16) as ul6);
check = csum_replace(check, (old & Oxffff) as ul6, (new & Oxffff) as ulf);
check

#[inline (always)]
pub fn change_len_and_checksums_v4(
ctx: &XdpContext,
ipvédhdr: *mut Ipv4Hdr,
udphdr: #*mut UdpHdr,
delta: ulé6,
) -> Result<u32, (> {
let orig_frame_size = ctx.data_end() - ctx.data();

let orig_ipv4_len = ul6::from_be(unsafe { (xipv4hdr).tot_len 1});
let ipv4_len_new = orig_ipv4_len + delta;
let mut csum = ul6::from_be(unsafe { (*ipv4hdr).check });

csum = csum_replace(csum, orig_ipv4_len, ipv4_len_new);

unsafe {
info! (
ctx,
"ctx.len: {} + delta = {} || ipv4 len before: {}, ipv4 len after: {}, delta: {}",
orig_frame_size,
orig_frame_size + delta as usize,
orig_ipv4_len,
ipv4_len_new,
delta
D
(*ipv4hdr) .tot_len = ul6::to_be(ipv4_len_new) ;
(*ipv4hdr) .check = ul6::to_be(csum) ;

}

unsafe {
(*udphdr) .len = ul6::to_be(ul6::from_be((*udphdr).len) + delta);
(*udphdr) .check = 0;

}

// using adjust_tail invalidates all boundschecks priviously dome, so this
// has to go below the address swaps
if unsafe { bpf_xdp_adjust_tail(ctx.ctx, delta.into()) } '= 0 {

info! (ctx, "adjust_tail failed for tail delta: {}", delta);

Ok (xdp_action: : XDP_PASS)

Listing 8: xdp-dns-cache-ebpf/src/helpers.rs

oW N

© W N o o«

20
21
22
23
24
25
26
27
28

29

o s W

© w N o

1. xzdp-dns-cache-ebpf/src/csum.rs

/R ARARARAAA KA KA A KA AT AT AT A A AIAAAA A A A A AR A AR KK FA AR KKK KKK KK A AR KK KKK
* Title: XDP Tutorial

* Author: Eelco Chaudron

* Date: 2019-08-16

* Availability: https://github.com/zdp-project/zdp-tutorial

K ARARARAKATAIAIARAKAK A A KA I AKAKAKA KA KKK KKK KKK KK KK KK A KKK KKK KKKKKKKK KKK)
// Inspired by zdp-tutorial:advanced03-AF_XDP/af xzdp_user.c

// The algorithm can also be found in RFC 1624.

#[inline (always)]

pub fn csuml16_add(csum: ul6, addend: ul6) -> ul6 {
let res: ul6é = csum;
let res = res.wrapping_add(addend) ;
if res < addend {

res + 1
} else {
res
}
}
#[inline (always)]

pub fn csuml6_sub(csum: ul6, addend: ul6) -> ul6 {
csuml6_add(csum, !addend)

#[inline (always)]
pub fn csum_replace(check: ul6, old: ul6, new: ul6) -> ul6 {
!csum16_add(csuml16_sub(!check, old), new)

Listing 9: xdp-dns-cache-ebpf/src/csum.rs

J. xdp-dns-cache-ebpf/src/cursor.rs

pub struct Cursor {
pub pos: usize,

impl Cursor {
pub fn new(pos: usize) -> Self {
Self { pos }

Listing 10: xdp-dns-cache-ebpf/src/cursor.rs

