University of Warsaw
Faculty of Mathematics, Computer Science and Mechanics

VU University Amsterdam
Faculty of Sciences

Joint Master of Science Programme

Maciej Wojciechowski

Student no. 209510 (UW), 1735691 (VU)

Border Gateway Protocol Modeling
and Simulation

Master’s thesis
in COMPUTER SCIENCE

Supervisors:

Benno Overeinder
NLnetLabs, Amsterdam

Guillaume Pierre,
Maarten van Steen
Dept. of Computer Science,
VU University Amsterdam

Janina Mincer-Daszkiewicz

Institute of Informatics,
University of Warsaw

July 2008

Oswiadczenie kierujacego praca

Potwierdzam, ze niniejsza praca zostata przygotowana pod moim kierunkiem i kwa-
lifikuje sie do przedstawienia jej w postepowaniu o nadanie tytutu zawodowego.

Data Podpis kierujacego praca

Oswiadczenie autora (autoréw) pracy

Swiadom odpowiedzialnosci prawnej o$wiadczam, ze niniejsza praca dyplomowa
zostala napisana przeze mnie samodzielnie i nie zawiera tre$ci uzyskanych w sposoéb
niezgodny z obowiazujacymi przepisami.

Oswiadczam réwniez, ze niniejsza praca jest przedstawiona w ramach wspoélnego
programu magisterskiego Uniwersytetu Warszawskiego i Vrije Universiteit w Amsterda-
mie. Praca nie byta wczesniej przedmiotem procedur zwigzanych z uzyskaniem tytutu
zawodowego w wyzszej uczelni.

Oswiadczam ponadto, ze niniejsza wersja pracy jest identyczna z zalaczong wersja,
elektroniczng.

Data Podpis autora (autorow) pracy

Abstract

Border Gateway Protocol (BGP) is de facto the only inter-domain routing protocol of the
Internet. Although the protocol is reasonably simple, due to the size of its current deployment
many anomalies can be observed. Such anomalies are for example very long convergence time
or path haunting. Some techniques (e.g., like route flap damping) have been applied to tackle
the observed problems but they have side-effects that were not anticipated before. There is
still a strong need for better BGP protocol understanding.

In this thesis we present a new, ambitious approach to BPG simulation. Instead of focus-
ing on intra-domain communication, network and protocol are highly abstracted in order to
allow for large-scale simulation. We describe our model of the BGP protocol along with its
implementation. The implementation is validated in order to show to what extent our model
resembles the real-world. Many tracks of future research are shown as well as many possible
uses of this kind of approach to BGP simulation.

Keywords

BGP, inter-domain routing, Internet, modeling, simulation, emulation, Autonomous System

Thesis domain (Socrates-Erasmus subject area codes)

11.3 Informatics, Computer Science

Subject classification

C.2.2 [Network Protocols|: Routing

C.2.4 [Distributed Systems|: Distributed applications
1.6.3 [Simulation and Modeling|: Applications

1.6.8 [Types of Simulation|: Distributed

Contents

1. Introduction 5
1.1. Background L e 5
1.2 BGP . . o e 5

1.2.1. Prefix Routing)
1.2.2. Autonomous System L 6
1.2.3. Basic Operations 6
1.24. Routing policies.o 7
1.3. BGP Iustability o 7
1.3.1. Project Motivation oo 8
1.4. Outline e 9

2. Current state of BGP research 0oL 11
2.1. BGP Monitoring 11
2.2, BGP Simulation Lo 11

2.2.1. Simulation Software Lo o 11
2.2.2. Conclusions L 13

3. The Model of the BGP Protocol 15
3.1. Current State of the Internet 15
3.2. Network Modeling 16

3.2.1. Network Links 16
3.2.2. Autonomous Systems 16
3.3. Routing oL 17
3.3.1. Basic Operation 17
3.3.2. Protocol Abstraction 17
3.3.3. BGP modeling 19
3.3.4. Summary ... oo 21

4. Design and Implementation 0oL 23
4.1. Design Requirements oL Lo Lo 23
4.2. Application of the Model 24
4.3. Simulation framework Lo 24
4.4. Hardware Environmento 25
4.5. Programming Environment Lo Lo 25
4.6. Execution L e 26

4.6.1. Communication 26
4.6.2. Coordinator L 26
4.6.3. Compute Node L 27
4.6.4. AS Implementation 27
4.6.5. Execution Flow o 28
A7, SUMMAryo e e 29

5. Validation Description oo 31

5.1. Model Validation 31
5.2. Validation Techniques L 31
5.3. Experiment Framework o 32
5.4. Validation Approach 32
5.5. Experiment Description L Lo 33
5.5.1. BGP Beacon 33
5.5.2. Route Views 33
5.5.3. Signal Duration and Relative Convergence Time 34

5.6. Experiment Setup 35
5.6.1. Runtime Environment 35
5.6.2. Simulation Parameters oo 35
5.6.3. External factors. 37
5.6.4. Time Measurement Lo 37
5.6.5. Single Experiment Description, 38
5.6.6. Experiment Instance Description 38

BT, Summary ..o ... e 40
6. Results Discussion L 41
6.1. Experimental Setup 41
6.1.1. Graphical Data Representation 41
6.1.2. Beacons 41

6.2. Obtained Results L 42
6.2.1. Simulated Behavior. 42
6.2.2. Parameters Sensitivity oo 43
6.2.3. Parameters Used 44

6.3. Results Comparison L L 44
6.3.1. “BGP Beacons” Experiment Discrepancy 45
6.3.2. Similar and Different Characteristics 45
6.3.3. Withdrawals Propagation 46

6.4. What-if Analysis 47
7. Conclusions 49
7.1. Impact of This Project 49
7.1.1. Proof of Concept 49
7.1.2. Real-world Resemblance 49

7.2. Future Research a0
7.2.1. Validation and Calibration 50
7.2.2. Model Properties Study oo 50
7.2.3. Possible Usage 50
Bibliografia a3

Chapter 1

Introduction

1.1. Background

One of the many remarkable qualities of the Internet is that it has scaled so well to its current
size [33]. The Internet evolved from the inter-connection of independent networks and is
still constantly evolving—number of networks, relations between them, and their connectivity
are changing all the time. With the inter-connection of independent networks (domains), a
mechanism is needed to route data between the different domains.

For fixed small size networks, routes can be created statically, but for bigger and constantly
changing networks we need a protocol that can create, change, and withdraw routes according
to the state of the network at a particular moment. Because of the sheer size of the inter-
connected networks and the dynamics of changes occurring between them, static routing is
not good enough since it cannot adapt itself to these changing conditions.

The Border Gateway Protocol (BGP) is a protocol that allows dynamic route creation
and maintenance such that reachability is preserved. In contrast to static routing, BGP
can automatically adjust routing configuration based on network path distance information
received from other users of the protocol. BGP is a rich protocol that has many ways to
sustain nodes or network failures as well as changes in the network topology. The main goal
of the protocol is to maintain connectivity between inter-connected networks such that traffic
can be routed to its destination.

1.2. BGP

As of today BGP is the core inter-domain Internet routing protocol. Its main objective is
to exchange information about network connectivity and reachability between inter-domain
entities called Autonomous Systems.

1.2.1. Prefix Routing

In order to route a data packet to a particular network, the destination network must be
identified and located. BGP uses Prefix Routing to address networks. Network prefix is a
general idea of assigning an identifier to a network in such a manner that for each data packet
it is clear whether its destination lies inside a given network. On the other hand, prefix does
not give us any information about how to reach its destination network—this information has
to be obtained using the BGP protocol. For BGP to maintain connectivity means to be able
to know how to route a data packet to the destination.

1.2.2. Autonomous System

Prefix routing is done between independent domains, also called Autonomous Systems (AS).
It is the basic abstraction of independent entities comprising routers, networks, and policies.
BGP can be seen as a protocol that maintains information on how data packets should be
routed between different Autonomous Systems. Although an AS may consist of many hun-
dreds of networks and thousands of routers, from an external point of view its behavior has
to be consistent.

Every AS has a globally unique number (sometimes referred to as Autonomous System
Number, or ASN) associated with it; this number is used in both the exchange of exterior
routing information (between neighboring ASes), and as an identifier of the AS itself [26].
ASN is only an identifier, it does not reveal any information about the AS.

At the present time there are more than 27000 registered ASes communicating with each
other using the BGP protocol [23].

1.2.3. Basic Operations

BGP is a protocol used for maintaining routing information between ASes. Each AS is
connected to a number of other ASes (called neighbors or peers) and exchanges its routes with
them according to AS-specific policies. After receiving information an AS may propagate it
to its own neighbors. This lets the information spread like a gossip.

Most intra-domain routing protocols are based on Dijkstra’s algorithm. In contrast, BGP
is vector-path based, which means that information is not periodically broadcasted and that
BGP routers do not have the full topological view of the network. Each router knows only
how to reach its direct neighbors and through which neighbor particular Network Prefixes can
be reached.

For each Prefix Network, an AS can use only one path as its default path. It can propagate
this path to its neighbors, so that they can use the AS as transit for their traffic routing. In
addition to the default path, all alternative paths leading to a given Network Prefix received
from the other neighbors have to be stored. The reason is to be able to quickly restore the
connectivity when the default path becomes unavailable—an AS may then start to use another
path to route data packets and maintain connectivity even when a link has failed or network
topology /reachability has changed.

Technical Description

Routing information sent between peers in BGP has two forms: announcements and with-
drawals. A route announcement indicates that a router has either learned of a new network
attachment or has changed policy to prefer another route to a network destination. Route
withdrawals are sent when a router makes a new local decision that a network is no longer
reachable [16]. Upon receiving a message each node decides what to do with it (i.e., change
the routing table) and whether to propagate the message further. Both of these decisions are
made according to AS policies. Effectively, BGP is a peer-to-peer protocol that distributes
routing information and keeps routing tables up-to-date.

In contrast to other routing protocols, BGP does not periodically flood the network with
routing information, but sends messages in an incremental manner. In theory messages should
be sent only when a new route is announced, updated, or withdrawn. Such information should
be propagated to all other ASes (of course according to policies).

BGP stores routes to other hosts as lists of ASes that have to be traversed by the packet to
reach the destination, and IP address of the next hop on the path. When a new announcement
is received, policies are evaluated to see whether the new route is better than the current one.

If this is the case, then the old route is replaced by the recently received. Next, if policies
allow it, the route is announced to the neighbors.

Effectively, route update is equivalent to route withdrawal or announcement. BGP requires
every router to store information received from every neighbor as well as information sent to
other neighbors. Only one route can be used for one destination and it is prohibited to
propagate a route different from the one actually used.

For routing purposes, storing only the next-hop IP addresses would be sufficient but BGP
requires to store whole ASes path. This allows routers to choose better paths (by length) and
avoid loops on routing paths—when an AS receives a route announcement it first checks if it
is not already on the routing path, in which case, the route is not evaluated.

1.2.4. Routing Policies

BGP itself is a vector protocol in the purest form. When different routes for a given prefix are
available, the shorter one is considered to be the better one. Although this behavior seems
to be reasonable, it is not always desirable for a particular AS operator. For that reason
BGP allows to create a set of rules that determine which route is the best and, what is more
important, whether a route is suitable to be forwarded to a neighbor. Such set of rules are
called policies.

In general, the relations between peers can be divided into two categories: (i) customer-
provider, and (ii) peering. In customer-provider relation one peer is a connectivity supplier
for the other—the provider provides transit services for which the customer has to pay. In
peering relation, both peers are considered equal and exchange traffic between their networks,
in general without money being involved.

Of course one AS can have many providers and/or customers as well as many peerings. In
addition some peers and /or providers may be considered better and traffic should be directed
to their networks even if the AS path length is suboptimal. With policies an Autonomous
System can decide which neighbors to use for which prefixes, while still having other paths
available as backup.

In fact routing policy is a way how routing decisions are made in the Internet today [12].

1.3. BGP Instability

Although the basic BGP protocol principle (exchanging information about existing routes
between routers) is quite simple, the protocol exhibits very complex behavior. It is not
uncommon that large-scale deployments of protocols introduce side-effects that are not seen
in small-size deployments. It can be attributed to the fact that messages are processed by
the servers and small interactions are becoming more significant when the amount of peer
interaction patterns is increasing [1]. In large-scale deployments even anomalies that are very
rare can have a big impact on the overall behavior.

Routing instability can be described as rapid change in network reachability information
and topology information. Some of these changes are the results of genuine events in the
network but it has been observed that surprisingly many are results of network link failures,
configuration errors, and software bugs. Such information is then propagated throughout the
network, generating large amounts of sometimes unnecessary traffic. This in turn degrades
network performance and the overall efficiency of the Internet infrastructure [17].

Over the years some anomalies have been studied |17, 16]:

Redundant information Although the problem has been tackled and some improvements
have been developed, still vast part of exchanged messages is pathological or redundant.

Uniform distribution There is not a small set of ASes or routes that are responsible for
generating or propagating unnecessary announcements or withdrawals. It is therefore
assumed that the protocol (and/or its implementations) is responsible for the patholog-
ical behavior and not only misconfigurations of particular routers [27].

Some techniques have been developed to improve the stability of the protocol:

Route flap damping When a route is advertised, withdrawn and then re-advertised it is
considered to be flapping. Flapping routes are expensive because routers have to com-
pute new routes every time a message is received. This leads to higher load on the
router and may lead even to crashes in some cases. Therefore some BGP implementa-
tions make use of so called route damping—a penalty is assigned to a flapping route and
if the penalty exceeds a given limit, such route is considered to be invalid. The penalty
is decreased over time. If the route stops flapping it is advertised again—in which case
the penalty is completely withdrawn.

Message aggregation There is often a correlation between updates and withdrawals. Quite
often when a route is being withdrawn there is an immediate announcement - the route
is just changing or behaves pathologically. To decrease the BGP traffic volume it is then
advantageous not to propagate the message immediately, but to buffer it for some time
and aggregate the information. If a route is withdrawn and then reannounced just the
same, it is correct to discard both messages because the overall status is the same. Such
approach decreases the traffic volume as well as computation on BGP routers.

Unfortunately both route damping and message aggregation introduce delays to route
propagation. Therefore although the protocol and the routes get more stable, the convergence
speed decreases. It has been studied that in fact route damping can significantly exacerbate
the convergence times for relatively stable routes [19]. It is not clear whether this mechanism
should be still used as routers are much more powerful now and fast route convergence is very
important.

1.3.1. Project Motivation

Although a large fraction of the world’s economy relies on correct BGP behavior, there is little
understanding of its global behavior. It is therefore important to understand the behavior of
BGP, as these issues are threatening the growth of the Internet. As of today our understanding
of the protocol and the causes of its pathological behavior are not good enough to be able to
predict how BGP will behave in the future. BGP is an essential part of today’s Internet and
therefore it is crucial that the protocol is able to maintain routing information even when the
conditions change.

It is not clear how much of the traffic exchanged between BGP routers is pathological
and how serious this problem is. The issue is being studied by the IRTF RRG group be-
cause finding answer to these questions might be crucial for the future growth of the Internet.
Knowledge whether the increasing update load is caused by the growth of the Internet, in-
creasing interconnection between ASes, or by more diverse policies (or maybe a conjunction
of these factors) may allow us to take countermeasures: either try to tackle the causes of
the problem or redesign some parts of BGP protocol. We want to be able to see how future
changes of these factors will affect BGP’s dynamic behavior.

To date, two main approaches of understanding the global BGP behavior have been ex-
plored: (i) detailed, small-scale simulations; and (ii) monitoring of the real deployment. We
want to explore a different direction: model the global behavior of BGP in a scalable faghion
(which implies focusing on the overall picture) to study the impact of diverse parameters on
the global properties of the system.

Simulation may even lead us to find new problems in BGP’s behavior that have not been
observed before. For example issues that we have overlooked or that have not yet occurred
but are likely to occur in the future. We need to search for limitations of the BGP deployment
size. As BGP is such a crucial part of the Internet, it is extremely important to have a strong
tool for analyzing the protocol and its behavior.

We are interested in finding answers to many unanswered questions about BGP dynamic
behavior:

e How does the network and its dynamic properties behave if we change the network
topology and/or its interconnectivity?

e How do different policies and techniques (e.g., route damping) affect the convergence
time and routing instability?

e What is the impact of number of prefixes and nodes number on the protocol behavior?

In the IETF “BGP Stability Improvements,” Internet-Draft [14], Li and Huston propose
a few solutions to improve BGP stability. It is assumed that one of them should be chosen
and then deeply examined. A BGP simulator could contribute significantly to evaluate these
ideas and show empirically whether theoretical predictions are actually true.

There is a lot of BGP-related data available on the Internet. Big parts of network topolo-
gies can be reconstructed using ISPs looking glasses, Internet research-oriented Associations
like CAIDA [5], or RIS databases [29]. We would like to have a simulator capable of simulating
a BGP network of today’s size, with about 27,000 ASes and about 250,000 prefixes [23]. We
believe that simulating BGP on a small scale or with regular network (like cliques, meshes,
and alike) does not give us enough information about the protocol’s real behavior.

We believe that by studying the dynamics of BGP’s behavior we will be able to contribute
to the BGP research area. Our study may help increase the understanding of the protocol by
AS operators, Regional Internet Registries (RIRs), BGP researchers and the Internet society.
Data obtained from our simulations may help evaluate currently used BGP techniques and
develop new ones. Possible hypotheses for further study are, e.g., band-stop filtering, path
length damping, or optimal path hysteresis [14].

1.4. Outline

Chapter 2 provides information about current state of the BGP research. Both analytical
studies as well as available BGP simulators are described, along with their advantages and
weaknesses. We describe our abstract model of the BGP protocol in Chapter 3. Details of the
protocol, along with their impact on the BGP dynamic behavior are discussed. Afterwards, in
Chapter 4, we present the design of the simulator, along with the implementation in Java. In
order to show the accuracy of our simulator, we perform a validation experiment (described in
Chapter 5) by studying BGP Beacons behavior and comparing the results with those from a
real-world study. Chapter 6 discusses the results, showing similarities and giving explanations
for observed differences. Contribution to the BGP research field, possible future research, and
improvement possibilities are described in Chapter 7.

Chapter 2

Current state of BGP research

Because the BGP protocol is playing such a significant role in today’s Internet, the protocol
behavior has been extensively monitored and analyzed [16, 15, 10, 11, 13]|. The basic objective
in BGP (exchange routing information between peers) is very simple but the scale of proto-
col deployment makes its behavior very complex. Over the years many studies have been
conducted which can be roughly divided in two categories: monitoring and simulations.

2.1. BGP Monitoring

For monitoring the behavior of BGP, various tools are available like RouteViews [30], Looking
Glasses, and RIS [29]. By using these tools it is possible to obtain some partial information
about BGP router status, messages exchanged, and BGP traffic volume. CAIDA [5] monitors
the state of BGP peers and its relationships trying to identify them and reconstruct a graph
of the BGP network topology. As BGP monitoring and analysis is based on real-world data
collection, study of future behavior and what-if scenarios is difficult or even impossible.

2.2. BGP Simulation

Because the protocol is too complex to be described analytically, BGP research quite often
involves simulation. For the simulation we have to model the protocol and abstract some of
its parts that are not relevant for the particular study. There is always a trade-off—on the
one hand the more we abstract the less accuracy, on the other hand the simulation gets faster
and can in fact simulate BGP on larger scale. Although data obtained from simulation is less
accurate than real-world data collection (monitoring), simulation does allow to study future
behavior and what-if scenarios.

2.2.1. Simulation Software

There are a number of BGP simulators publicly available. Although the simulators differ
in certain points they show some significant resemblance: BGP is always literally or almost
literally implemented.

Discrete Event Simulation

In his PhD thesis “An analysis of convergence properties of the border gateway protocol using
discrete event simulation,” Brian J. Premore [24] proposes to implement and run BGP protocol
on top of the SSFNet [32] discrete event simulator. The author decided to create an as exact
BGP implementation as possible. Although the author suggests that his implementation
allows us to observe BGP behavior, the results contained in the thesis cannot be treated as

11

representative for large networks. He analyzed a few different network topologies: line, ring,
focus, and clique topology for at most 30 hosts. Neither the used topologies nor the host
numbers let us draw conclusions about actual BGP properties in Internet-like networks. Also
his statement that although the Internet is not a clique it can be modeled as composition of
line, ring, and clique topologies is neither proved nor convincing.

Another discrete event simulator is BGP++ [2]. It is a BGP simulator using the Zebra
bgpd daemon [34] on top of the ns-2 network simulator [21]. The BGP-++ simulator actually
simulates the network itself (in ns-2) at a very low level. BGP is not abstracted but runs as it
is—it is a full-featured BGP implementation (Zebra) that is used in the real world. ns-2 is an
event-driven network simulator, so the fact that BGP++ is a simulator built on top of ns-2
makes BGP++ an event-driven simulator as well. BGP-++ runs BGP without any abstraction
and is therefore perfectly suitable for simulating BGP in relatively small networks, with deep
insight in each of the communication aspects (such as TCP congestion level). BGP-++ also
generates a very accurate state of each simulated router. This makes BGP++ a very useful
tool to test and predict router states in changing conditions in small networks.

Unfortunately prefix tables are very big (each of the BGP nodes has to store information
for each of the prefixes) and the amount of computation involved in a full BGP implementation
is not negligible. Concluding, BGP++ is not suitable to study networks with many routers
because of memory and CPU requirements.

C-BGP

C-BGP [6] is a BGP simulator addressing routing policy evaluation. The backbone network
is not simulated in detail as in BGP++ but C-BGP still uses a full BGP implementation.
It is possible to see the exact state of each node (with all BGP parameters) during the
simulation and each BGP decision by evaluating all policies, preferences, and tie-breaking
rules. According to the project homepage “C-BGP is aimed at computing the outcome of the
BGP decision process in networks composed of several routers”.

During design and modeling of C-BGP, some things that are normally part of the BGP
protocol were omitted. This involved for example the TCP level, connection creation, keep-
alive messages and some parts of BGP Finite State Machine (as defined in TETF specifica-
tion [26]) [25]. This is a step in the right direction: do not use resources and time to compute
things that are not important for the simulation outcome.

Surprisingly C-BGP allows to simulate big networks by exploiting an interesting BGP
property: with only few exceptions, computations made for different prefixes are independent
with respect to the resulting nodes state. Therefore it is possible to do the computations for a
part of prefixes, store them on hard drive, do the computation for another part of the prefixes
and so on. This approach allows for the simulation of large networks of BGP routers, but
unfortunately does not allow observation of protocol dynamics. When the prefixes are splitted
in distinct parts and run separately, a lot of information is lost: the traffic between the nodes,
their load and convergence speed. Those attributes depend strongly on all information that
is exchanged at a particular point of time. Nevertheless this approach is very interesting,
especially if we consider simulating different parts of prefix space on separate machines. C-
BGP would then simulate BGP in parallel.

The simulation approach used in C-BGP is slightly different from BGP+—+. While BGP++
is an event-driven simulator, C-BGP is state driven—most important from its perspective is
the steady-state of BGP routers and not how state changes over time. Another difference
is that normally network simulators introduce some level of nondeterminism (as the network
traffic is not deterministic). This is not the case in C-BGP: for every run with the same input
data the output and the whole simulation run is exactly the same.

12

2.2.2. Conclusions

Both decision process simulator (C-BGP) and available discrete-event simulators simulate
BGP at the protocol level in full detail. One can say that these simulators are prefix-oriented—
the most important thing is that information for each prefix is correct at every moment of
the simulation and as exact as possible.

The BGP++ author points out that conventional simulators exhaust resources of a single
machine and that it limits the simulation to small size networks. He is truly aware that results
from such simulations are not inductive of the Internet’s wide trends. What is suggested is to
try exploiting parallel and distributed simulations, which is a very reasonable idea. What is
not considered is lowering the simulation memory and CPU need by simplifying the problem
complexity [9].

Important characteristics to observe (given the research goals set out in Chapter 1) is the
volume of BGP messages exchanged between ASes, and time it takes for a message to converge.
This means that we would like to be able to observe the network traffic, convergence speed,
node load, but not necessarily the exact states. Of course, one cannot neglect the prefixes
and BGP computations, but we want to abstract many BGP features and aspects which do
not really influence the protocol’s dynamic behavior. Although full-featured BGP solvers
(like BGP++ or C-BGP) are more accurate, we think that some accuracy can be traded for
less memory and CPU resources, giving way to simulation of large networks (i.e., the current
Internet AS network).

Using discrete-event simulators like SSFINet might be interesting but analyzing large-scale
deployment of protocols using discrete-event simulators is very hard, because of the need to
order events correctly in parallel or distributed execution. Given that there are more than
27,000 heavily inter-connected BGP nodes and more than 250,000 prefixes, it is easy to spot
that there will be billions of messages exchanged between these nodes during the simulation.
We have to look for another, broader approach that would allow us to actually process such
amounts of data.

Monitoring and analyzing the BGP protocol gives us very good understanding of the
protocol performance during the time of monitoring. We can then analyze collected data and
even try to analytically look for the root causes of the problems. What we cannot do using
monitoring is predict how things will change when certain aspects of the protocol change.
That seems to be a very important for the future growth of the Internet.

We believe that although some substantial simulation-based BGP research was conducted,
none considered what BGP actually is: a simple P2P protocol, with a very big number
of participating peers, which sometimes behaves pathologically. Trying to understand that
pathological behavior using small or regular networks will probably not give insight in the
complex large-scale behavior.

13

Chapter 3

The Model of the BGP Protocol

The challenge of designing a model of inter-domain routing is the appropriate level of detail
of the protocol and the AS topology router network. In order to perform the simulation, we
have to introduce a model that abstracts or ignores those BGP parts which are not relevant
for our study (like link delay) while focusing on those aspects that truly affect BGP dynamics
(like specific timer settings or Route Flap Damping).

3.1. Current State of the Internet

In the perspective of this MSc. research project, the Internet is not a regular network where
every participating entity is equal and can freely communicate with other entities. In fact,
the Internet is a network of autonomous networks (Autonomous Systems) that are connected
with each other. Each autonomous network can consist of thousands of hosts and span large
geographical regions.

One of the main goals of the Internet—global connectivity and reachability—is achieved
because autonomous networks exchange traffic with each other. As not every network is
directly connected to all others, a way to exchange information about Internet topology (inter-
AS connections) and paths for forwarding packets—a routing protocol—is needed.

As presented in Section 1.2.3, most intra-domain routing protocols (inside the autonomous
network) are based on Dijkstra’s algorithm. In such protocols, information is being periodi-
cally propagated to other peers so that in the end every participating router knows the full
topology of the network. With full knowledge of the graph, optimal paths can be computed.
This is feasible due to the relatively small size of the network. However, link-state algorithms
have issues with respect to scaling: memory and CPU requirements to handle large link
databases are not insignificant. Also for very large networks, the amount of data exchanged
by the routers can swamp the network. An example of the most popular protocols using full
network topology are IS/IS and OSPF.

In inter-domain routing, full topology knowledge would be very expensive in terms of CPU
memory usage as well as bandwidth costs. Inter-domain routing protocols have to be much
more robust and scalable than intra-domain routing protocols as they work in a much larger
environment,.

Intra- and inter-domain routing also have different principles. The main goal of a intra-
domain routing protocol is to fulfill technical demands, whereas inter-domain routing protocols
are more complex as they have to reflect political and business relationships between the
networks and companies involved.

BGP is the only inter-domain routing protocol available at this time. It is a protocol where
peers make decisions based only on a limited view of the global network topology—the path
to a destination point. Protocols, like BGP, where decisions are made according to a path to

15

the destination without knowing the full graph topology are called vector-path protocols.

3.2. Network Modeling

Routing algorithms operate on the network where data must be transfered from source to
destination. With modeling and simulating BGP, a model of the network topology it operates
on is also required. The network model includes the network links and the ASes.

3.2.1. Network Links

ASes are connected by TCP/IP links, where data is carried over various types of wired media
(copper/optical fiber), switches, routers, etc. Bandwidth, signal propagation, contention at
the switches and routers results in communication delays and dropped packages. Although
these network characteristics influence the operation of BGP, the precise timing in milliseconds
of the events is not of importance, but rather the occurrence of the event itself.

Also the topology of a particular AS network has influence on the propagation time inside
that AS (especially when this AS spans multiple continents).

Though one can see that the cable and router delay may have some impact on for example
message propagation time the difference is still in order of milliseconds. In reality BGP
convergence studies [18, 3] show that convergence time is in the order of hundreds of seconds
and does not distinguish values below 1 second.

Detailed simulation of data links is a very complicated task (done in for example the ns-2
simulator [21]) and doing that limits the size of networks that can actually be simulated.
As BGP’s self-introduced delay is a few magnitudes higher than the one introduced by the
network we claim that we can actually ignore the link-delay and still design a valid BGP
model within accepted accuracy boundaries.

Another thing that we do not want to model explicitly is connection creation and all kind
of keep-alive messages. Both connection creation messages (as for example TCP Syn packets)
and keep-alive messages are only important if something goes wrong (for example if a keep-
alive message does not arrive on time the connection is considered to be broken). As long as
everything works well, modeling them would introduce only noise without actually changing
the behavior of the modeled protocol. Therefore connection-administration related messages
are ignored and connection failures can be introduced manually if needed.

3.2.2. Autonomous Systems

The biggest simplification that we opt for is no explicit modeling of the intra-AS network
topology. That means that in the model each AS is modeled as simple, atomic entity without
taking its complexity and geographical span into account. There are two reasons for doing
that:

1. There are about 27,000 ASes in the current Internet, which is already a lot. Trying to
model their internal topology would require us to simulate hundreds of thousands of
entities. That does not seem to be feasible.

2. The topology of each autonomous network is proprietary information of the entity con-
trolling it. Obtaining and/or inferring such information is a complicated task and if we
would like to model the today’s Internet we would not be able to get creditable data.

On the other hand, connections between particular ASes are in most cases not pro-
prietary information and they can be inferred from observations using Route Views
monitors, RIS routers, and traceroute utilities. CAIDA [5] publishes the inferred AS
graph with (simplified) relations between ASes on a regular basis.

16

We opt for modeling the BGP network on a high level: without taking link capacity and
delay into account, ignoring packets such as keep-alive messages and treating each AS as an
atomic entity. Due to these simplifications, we should be able to apply our model to very big
networks (like todays Internet) and run simulations upon them. This very high abstraction
level is where our simulator differs from currently available ones—they cannot simulate big
networks due to the amount of details they are taking into account.

Although the AS network topology is not modeled, its size is taken into account. If an
AS consists of hundreds of routers, iBGP can take significant time to propagate information
inside its network. Convergence time for big ASes is therefore not negligible—the time it takes
to propagate a message inside an AS is modeled by a mathematical function with configurable
parameters. This is of course a simplification but it still allows to make a distinction between
big ASes (with hundreds or thousands of peers) and small one (with only one BGP router).

3.3. Routing

3.3.1. Basic Operation

The main BGP objective is to propagate routing messages within the AS network. Such
a message is either an announcement—propagating that a route has changed or there is a
new route available, or withdrawal—propagating that a route is no longer available. Upon
receiving a message each BGP peer has to decide what to do with it: just store it, discard
it, install and /or propagate it. Decisions are made according to policies which are expressed
using many different parameters in BGP router configuration.

If a decision was made that a new route is the best one for a new prefix, the route can be
propagated or (what can be surprising at time) that the old one should be withdrawn without
propagating the new one. Routers have to know what they have received from other routers
(RIB-In), what they have installed as default routes (FIB), and what they have sent to other
routers (RIB-Out).

If all BGP routers would send messages as soon as they can, the convergence time would
be at the level of tens or hundreds of milliseconds. In reality there are some factors slowing
BGP down—in order to decrease the amount of messages exchanged and the noise.

Timer limiting the amount of messages is such a factor. Its main objective is to bound
the number of messages sent from one peer to another. Such timer states how much time has
to elapse before a next message concerning the same prefix can be sent—effectively slowing
down the convergence time. In the BGP such timer is called Minimum Route Advertisement
Interval (MRAI) and describes the minimum time interval between two consecutive prefix
updates sent to the same peer. Another factor slowing BGP down is route flap damping
technique which suppresses propagation of information about routes that are considered to
be unstable. Because of these factors, the messages sometimes have to wait before they can
be sent to other peers—this is the trade-off between faster convergence time and amount of
bandwidth consumed by the BGP protocol itself.

3.3.2. Protocol Abstraction

In order to model and simulate the BGP protocol we have to decide which parts of it are
relevant and which parts do not have much impact on its global behavior. Like in the previous
section the main factor for choosing whether something is important is whether it is relevant
for answering the questions about BGP dynamic behavior and impact of the network size on
this behavior.

BGP’s main principle is fairly simple: propagate routing information between peers to
maintain connectivity and reachability, trying to keep forwarding paths short. In fact BGP

17

is much more complicated than that. It has many properties that can be set in order to
change its behavior. One of the distinctive protocol characteristics is that it is policy-driven
and not every path will be propagated to every neighbor, and not always the shorter path is
selected for propagation. It has some techniques for traffic regulation like MRAI—a parameter
that states how often two peers can exchange data, and the route flap damping—a penalty
mechanism for bad behaving routes. Besides that BGP is not a single-threaded protocol - it
is being run by thousands of peers at the same time and their interactions also impact its
behavior. Though it is easy to understand the protocol’s main principle, it is really hard to
spot what is responsible for its dynamic behavior.

Finite State Machine

The current version of BGP is described in RFC4271. The data structures and Finite State
Machine (FSM) described there are conceptual and do not have to be implemented precisely
as described there, as long as the implementations support the described functionality and
exhibit the same externally visible behavior [26].

According to the standard, a BGP router is a (FSM) and its state changes when an
event occurs. From our point of view the FSM is not needed to successfully model the BGP
protocol. In fact, the FSM’s main interest is in the connection creation, keep-alive messages
and connection termination. As we have stated in previous section we do not intend to model
these network events. Hence, we do not need the FSM to take care of them. Our main
interest is sending updates and the route propagation part of BGP, not router or connection
maintenance. Of course our modeled BGP router also would have to have a state but it does
not have to resemble the complete BGP Finite State Machine.

MRAI Timers

The parameter MinRouteAdvertisementInterval Timer (MRAI) determines the minimum amount
of time that must elapse between an advertisement and/or withdrawal of routes to a partic-
ular destination by a BGP speaker to a peer [26]. The implementation of this timer is very
different depending on the router vendor [18]

e Cisco routers use 30 seconds as default (plus some random number to prevent self-
synchronization)

e Juniper routers use 0 seconds—no limits on how often information concerning one prefix
can be sent

An interesting thing is that both vendors implement MRAI timers on a per-peer and not
a per-prefix-per-peer basis. This makes it much less memory-consuming and is still compliant
with the RFC defining the BGP protocol.

As MRAI timers can introduce serious delays in the BGP message propagation time, we
cannot simply ignore them. We do not have to model them on a per-prefix-per-peer basis (as
BGP implementations do not do that either) but they are a very important factor influencing
BGP’s dynamics.

Route flap damping

In Section 1.3 we discussed how route flap damping works and how the convergence of the
flapping route is affected. Many studies (e.g., [4] and [19]) have shown that in fact a route
can be considered flapping at some point in the network as a result of a single withdrawal
or re-announcement. Since a route propagation can be suppressed even up to one hour, flap
damping has a very serious impact on both connectivity and convergence time.

18

Route flap damping is believed to be harmful [4] and its usage is currently discouraged
by the RIPE community [28]. Nevertheless many routers seem to be still using route flap
damping and it is believed to be the cause of the long convergence time observed for some
routes.

We are interested in the impact of the route flap damping on the BGP protocol and
therefore in order to simulate its behavior we have to include it in our model.

BGP parameters

As was stated before there are a lot of BGP related data that do not have any, or not significant
impact on the BGP’s dynamic behavior. As an example one might look at the NEXT-HOP
property of BGP announce message. This property contains the [P address of the next router
to contact to forward the packet.

Routers have not been modeled, only ASes and their peer/transit relations. Packet for-
warding will therefore not be done and there is actually no need to know the first router on
the BGP path. It is of no use to model it then.

Many factors in BGP are policy parameters, which are difficult to infer. It is very hard to
state in advance which of these parameters might be interesting. Because of that we want to
postpone this decision to the last moment—the simulator running time—and allow to specify
any kind of policy, taking into account both legitimate BGP parameters as well as totally
arbitrary ones. As decision making varies from peer to peer, there has to be a possibility left
for peers to express all kind of policies they might want.

3.3.3. BGP modeling

This subsection will explain how the parts of the protocol that are considered important are
modeled.

BGP Message

The only thing that we require from a BGP message in our model is that it is capable of
transmitting information from one peer to another. There is absolutely no need to stick with
BGP messages as described in RFC4271 [26]. On the other hand we do not want to change
the BGP message semantics as this might have impact on the measurements (if we would
like for example to count the number of messages exchanged). That means that our modeled
message cannot contain announcements for two different prefixes if they have different routes
(just like the real BGP message).

In our model a BGP Message contains only information about sender, a list of withdrawn
prefixes, a new route and a list of prefixes for which that route applies. As in normal BGP
either the withdrawal or the announce part might be omitted.

ASes, ASNs and Prefixes

We want to model each AS as a separate and independent entity capable of communicating
with other ASes by sending BGP Messages and making decisions according to its own policy.
Still we treat each AS as one router and model it as such.

ASNs (Autonomous System Numbers) and Prefixes are longer than they could be. We
want them to take as little space as possible (for sending messages over the network and for
storing routes) so in our model all ASNs and Prefixes are enumerated and each AS has access
to an entity capable of translating enumerated number into a real ASN or Prefix.

19

FIB, RIB-In and RIB-Out

As stated before, FIB is the store containing default routes for given prefixes (installed routes).
RIB-In contains information about the last route for a particular prefix received from a partic-
ular neighbor, whereas RIB-Out contains information about the last routes sent to particular
neighbors.

BGP makes a distinction between FIB and RIB, because only the FIB is used to for-
ward packets and it is therefore essential to have a faster FIB than RIB. In our case—no
forwarding—there is no need for a faster FIB. In fact, every time information from FIB is
needed, information from RIB-In is required as well. This is why in the model FIB and RIB-In
are treated as one Prefix Store. The Prefix Store for each prefix knows the routes received
from the neighbors as well as the currently installed route (if any).

RIB-Out has a very nice property—it can be recomputed. To recompute RIB-Out it is
enough to apply policies to FIB and see which route would be propagated to whom. As it
turns out the simulator is memory- and storage-bound so it is useful not to store RIB-Out
explicitly but recompute it every time it is needed.

Policy

BGP policy can be specified by many available configuration parameters. Some of them are in
the BGP standard, some are vendor-dependent. It was already stated that policies need to be
very flexible. This is why we opt for modeling policies as “black boxes” capable of answering
only two questions:

1. Is route x from peer A better than route y from peer B?
2. Can route x from peer A be advertised to peer B?

Each peer can then have it’s own “black box” and therefore enforce its own policies.

MRAI and Route Flap Damping

Both MRALI timers and Route Flap Damping are not really abstracted—they are modeled
just as they are.

For MRALI all computations are done as normally, but before a route is propagated it is
checked how much time has elapsed since the last message was sent. If the pause was not
long enough, the message is suppressed.

Also Route Flap Damping modeling is very straightforward—if a route is considered to
be damped it is simply not taken into account during calculations.

iBGP Convergence Time

To model iBGP convergence time an exponential function is used. The function has two
parameters: (i) maximum convergence time, and (ii) number of neighbors for which this value
is reached. The function is as follows: mazV alue™im(mazNeighbors.asSize)/mazNeighbors

asSize is size of the AS.

where

For one AS this function gives a constant time that each update will spend inside the AS
before getting propagated to its neighbors. It is very important to preserve the order of the
updates: two updates from the same peer to the same router have to be processed in the
same order, because otherwise the system could converge to the wrong state if for example
an announcement and a withdrawal for the same prefix were swapped.

20

3.3.4. Summary

In this chapter a model of the BGP protocol was presented. In order to shrink the model to a
computable size, many aspects were abstracted, simplified or even ignored. Still, an effort was
made to include everything that was considered important for answering important questions
about BGP’s dynamic behavior.

The model covers receiving messages, applying policies, and forwarding routing paths.
Important characteristics and parameters that dominate the dynamic behavior are incorpo-
rated. Other parameters and details of less prominent influence are abstracted from. The cost
in accuracy (of the model) will be evaluated in the next sections by validating the model and
simulation in a series of experiments and comparing the results with real-world observations.

21

Chapter 4

Design and Implementation

In order to perform simulations using the model designed in the previous chapter, it has
to be implemented as a computer program. There are many ways how the model can be
implemented, but in order to achieve the goals—being able to analyze BGP’s behavior in
large networks—a few requirements have to be added to the design and implementation of
the simulator.

4.1. Design Requirements

The design of the simulator is driven by the requirement for scalability of the system. If we
want to be able to successfully run instances of the model (as a simulator) on a large scale,
careful choices have to be made with regard to the implementation.

KISS (Keep It Simple Stupid) is a design principle that implies that simplicity should be
the key goal and unnecessary complexity should be avoided. This principle is applied to obtain
a minimal but sufficient simulator, one that will be capable of helping us to find answers to
important questions about the dynamic behavior of BGP. This design principle has already
been applied to the model—by ignoring many not important aspects of the protocol—and
will be applied further on.

Design requirements of our simulator include:

Scalability We want to be able to simulate BGP on a large scale. This means simulating
AS networks of size comparable with today’s Internet, and even simulation of larger
networks. In order to achieve high scalability, solutions that introduce bottlenecks have
to be avoided and the simulator has to be able to efficiently use available resources.

Efficiency In order to simulate a large network, the simulator has to be efficient. We do
not impose any particular performance numbers, but every design and implementa-
tion decision must be made with efficiency in mind with respect to computational and
communication complexity as well as memory usage.

Relaxed accuracy Given the highly abstracted model, results will be less accurate. This
is clearly a trade-off which has to be carefully balanced. We are neither interested in
the BGP state of particular nodes, nor in the exact contents of the messages exchanged
between peers. In our study, we are interested in statistical data and/or impact of
significant policy changes.

Extensibility It is impossible to clearly separate the significant and not so significant parts
of the protocol beforehand and also we do not a priori know the kind of experiments that
we might want to conduct. Simulation software must be therefore extendable in order
to be able to include components needed for further studies. We include things that

23

we consider necessary but leave “open” anything that might be considered significant
later. This leads to a design using loosely coupled components so that each one of them
can be easily changed, adjusted, exchanged, or removed. This is of course not always
possible, but should be considered when making design decisions.

4.2. Application of the Model

The model described in the previous chapter maps naturally to a simulator running a large
number of ASes using message passing for information exchange—in our case modeled BGP
messages. ASes are logically separated from each other as much as possible, just like they are
separated in the real BGP network.

For ease of modeling and distributed execution we opt for process-oriented simulation
model semantics [31]. That means that each process behaves like an independent program, has
a well-defined algorithm, can generate and process entities (messages), and multiple instances
can be run in parallel. In our simulator, each AS behaves like an independent process, runs
independently from the others and communicates with them using messages. This implies
that even if ASes are to share the same resources, they should be unaware of it and not
make any decisions based on knowledge other than available local information about network
topology.

ASes communicate with each other using the abstracted network described in Section 3.2.
This means that although ASes have communication links between each other, the only type of
message they are allowed to exchange is a valid BGP update—announcement or withdrawal.
An AS designed in such a way behaves just like a BGP router. The only knowledge about
the surrounding world it has are ASes to which it is connected.

We believe that building the simulator on top of independently running ASes is a simple,
yet a very powerful way to simulate BGP, which provides the flexibility to extend the simulator
in the future.

4.3. Simulation Execution Environment

Application of the model to process-oriented simulation described above does not imply a
particular execution mechanism for the simulation. Two viable approaches are considered for
the discrete event system under study:

Discrete-event simulation The simulation method executes events in chronological order.
This requires events to be ordered by a scheduler. The “time” is always moved to the
first event in the event-queue. In our case, an event in the simulator is a BGP update.

A few discrete-event simulators were described in Chapter 2. By using such an approach,
a very good accuracy level is achieved (as for example C-BGP has even deterministic
output) but it is limited in scalability by the effectiveness of the Parallel Distributed
Event Simulator (PDES). In Section 4.1 we have stated that scalability is one of the
driving factors in designing our simulator, so we have to look for a more scalable ap-
proach.

Emulation The main difference between discrete-event simulation and emulation is lack of
strict event ordering in the latter. The main idea in emulation is to let the simulated
entities run in quasi-real time and react to generated events when they occur. Causality
follows from execution order in real-time (wall clock time).

In our case it implies that each AS is running concurrently and reacts to received
messages. When processing of the received message triggers sending of new messages

24

(e.g., prefix announce propagation) such message is sent directly to the recipient without
delay other than the one introduced by the AS itself, for example, by MRAT timers. This
means that when a message is sent between two ASes only two entities are involved—
sender and recipient—and no distributed global coordination is needed.

Emulation gives the entities impression of being run in the real-time, without any bounds
from the simulator. Scaled time is used to control the progress of the simulation. Very
good scalability level is achieved thanks to the fact that ASes do not need to communi-
cate with each other in order to continue the simulation.

Since we want to simulate very large networks—tens of thousands of peers—we consider
the scalability property of the emulation approach to be a significant advantage and therefore
decided to use it as the simulation framework for the simulator.

To achieve the effect that each AS runs in quasi-real time, each AS is encapsulated in a
lightweight thread. Even if all threads are not executed at the same time, the thread scheduler
can still make the threads behave like they were executed all at the same time.

4.4. Hardware Environment

The design of the simulator allows for a distributed execution in order to study the BGP
behavior in large-scale AS networks. In our project, a homogeneous cluster is assumed for
parallel execution of the simulation. Such a cluster can consist of many computers called
nodes, connected with each other by a high-speed low-latency network, capable of running a
parallel application on many of them simultaneously. Homogeneity means that each of the
nodes (computers) used have the same or comparable hardware resources available. Thanks
to that, two similar tasks should on average take the same amount of time on any of the
nodes, and synchronization overhead of two processes running on different machines can be
kept relatively small.

By using an appropriate level of abstraction during the implementation, it is possible to
hide the fact that the nodes are connected by a computer network and have the impression
of running the application on one big virtual computer.

We want our application to scale and to be extendable, therefore the network communi-
cation overhead has to be kept minimal and any central component must by avoided. Such
a component could become a bottleneck when more resources would be available to the sim-
ulator. We opt for a model where if one entity wants to send a message to another one, no
other parties has to be involved in the process—interactions between two parties should be
kept local.

4.5. Programming Environment

Java was chosen as the programming language to implement the simulator. As an object-
oriented programming language, Java helps to write well-designed programs and what is
important—it makes code refactoring easy. Our simulator is highly experimental software
and having well maintained code is of great value. Besides that, Java interfaces are well
designed for implementing loosely coupled components, enforcing very strong functionality
and implementation separation. Each entity described in Section 3.3.3 is simply hidden behind
a Java interface and has one or more implementations.

Another argument for using a fully object-oriented language to implement the model is
that the process-oriented simulation approach maps naturally to object-oriented languages.
This is due to strong functionality-implementation separation and ability to clearly specify
interactions between independent entities at the language level.

25

4.6. Execution

Execution of the simulator is performed on many compute nodes, all of which are running
the same program (Single Instruction Multiple Data—SIMD). At the start of the simulation
every compute node reads its configuration from configuration files and learns which ASes it
will be simulating in the particular execution.

Besides computation nodes there is also one special node: the coordinator. This node is
not directly involved in the computation (BGP simulation) but is responsible for controlling
the course of the execution, introducing new events and necessary synchronization. The
coordinator ensures that the simulation is executed according to the given scenario.

4.6.1. Communication

Communication between the compute nodes is done using TCP channels. As each compute
node hosts many simulated ASes, which can have neighbors hosted by different compute nodes,
it is required that every compute node can freely send a message to another one. Therefore
we create a TCP channel between every two compute nodes, so that they can freely exchange
messages without involving any other node.

Besides having a TCP connection to every other node, each node is also connected to the
coordinator. This link is used for monitoring and controlling the compute nodes’ state as well
as ASes hosted by it.

Messages exchanged between two normal computation nodes can only be BGP updates:
two nodes do not have any other possibility of direct interaction with each other. ASes residing
on the same compute node are unaware of this collocation on one node. The only way they
can exchange a message is over the TCP link (even if the recipient is on the same physical
machine as the sender).

Messages to and from the coordinator can never be BGP updates because the coordinator
is not taking direct part in the BGP simulation and does not host any AS. Such messages
are arbitrary commands sent to and from the coordinator which are simply executed by the
recipient.

Using the Java builtin RMI as communication library failed, because RMI is unable to
handle the amount of communication generated by the simulator. Besides that, RMI uses
either standard Serialization or Externalization. Both of them are considerably slower than
the serialization currently built into the simulator which is highly aware of the type of serialized
data and can omit many unnecessary checks.

4.6.2. Coordinator

Although the coordinator is a central authority, it is not a bottleneck for the simulator, as it
does not take part in the simulation. The coordinator is an external entity, modeling some
environmental events, effectively controlling the execution of the experiment. The load of the
coordinator node during the experiments is negligible.

The main role of the coordinator is to make the simulation management easier and take
the management tasks away from the compute nodes. The responsibilities of the coordinator
are as follows:

Introduce and trigger events ASes do not have to know when to start announcing or
withdrawing a new prefix, when to connect to a new neighbor and so on. It is the
coordinator’s duty to deliver appropriate commands on time to the ASes.

Synchronize Compute nodes have to synchronize at the beginning of each experiment in
order to know when they can start connecting to each other. It is also important

26

that every node knows the time that is considered to be the start of the simulation
(which depends on the time it takes them to start at the beginning). Unfortunately
not everything can be broadcasted by the coordinator—some data (e.g., AS network
description) is loaded by the compute nodes from files at the start, as sending it to each
node would take too much time.

Monitor It is important to know the state of the nodes during the simulation. In order to be
able to accurately simulate BGP we cannot permit the nodes to get overloaded by the
amount of data to process or send through the network. It might also be interesting to
know some characteristics of the ASes’ behavior (e.g., process load or memory usage).
Such data can be periodically sent to the coordinator and stored in human- or machine-
readable form.

Process results Normally every experiment run on a simulator generates some kind of re-
sults. Though compute nodes can write their results directly to the files on hard drives,
it is more convenient to send the data back to the coordinator instead. It can be pro-
cessed, filtered and written in human- or machine-readable form by the coordinator.

Finishing the simulation Whether at the end or unexpectedly, the simulation eventually
has to stop if stop conditions are met. Compute nodes have to be aware of it because
they have to release resources they are using (e.g., close log files so that no data is lost).
The coordinator notifies all nodes and waits for them to shutdown.

Having the coordinator is not a “must” for the simulator but it helps to keep the man-
agement and scheduling apart from the core of the simulation—BGP updates propagation.
Though it is a single component, it does not have negative effect on the scalability. On the
contrary—by introducing it we have taken some work away from the computation nodes and
made the simulator scale even better. Distributed coordination is a complex task and putting
all coordination responsibility in hands of one entity, while not allowing this entity to become
a bottleneck, is a significant simplification.

4.6.3. Compute Node

Because most of the management job is done by the coordinator, the design of a compute
node is straightforward. Its main task is to host simulated ASes and give them means to
communicate with each other.

It is the compute node’s responsibility to maintain the TCP connection with other compute
nodes. All ASes hosted by one compute node share the same TCP connection but are unaware
of it. Also the possible transmission delay cannot affect the AS—from its point of view a
message is sent instantaneous even if it is buffered for some time before being really sent.

We use Java’s asynchronous 1/0 to forward messages efficiently. Messages from ASes are
put into a queue before sending so that they do not have to wait for it to be actually sent.

It is important to point out that the communication between different compute nodes and
between the nodes and the coordinator is done independently. We want to be sure that even
if links between nodes are heavily congested and the buffers are full, we will still be able to
communicate with the coordinator (e.g., to report the heavy load).

4.6.4. AS Implementation

Using an object-oriented programming language (like Java) to implement an AS, means that
the entities described in the model must be mapped to he programming language level. Our
main implementation principle is high interface-implementation separation. Thanks to this
we will be able to freely exchange components (and/or their implementation) of which an AS
is made. Base components of our AS implementation are:

27

PrefixStore — responsible for altering the state of the router when a new BGP update is
received. PrefixStore is capable of processing route announcements and withdrawals.
The purpose of this class is to encapsulate the decision making algorithm (as described
in [26]) according to the policy of the particular AS. PrefixStore uses PrefixCache as
database and propagates its decision to OutputBuffer.

PrefixCache — models RIB and FIB in our simulator. It behaves like a map that for every
prefix returns a data structure containing all the information about a prefix known to the
AS (i.e., all the routes received from all neighbors). PrefixCache is used by PrefixStore
but hides its implementation such that the PrefixStore does not really know how the
prefixes are stored. In fact only a part of the prefixes is stored in memory and the rest
is stored on the external storage implemented by DiskStorage—prefixes are sent to the
storage when there are too many prefixes in memory and read out when needed.

DiskStorage — a helper class encapsulating the storing algorithm, hiding its implementation
from PrefixCache. Its responsibility is to write and read prefixes from storage when it
is asked to do so. Currently prefixes are stored on the hard drive but there is also
an implementation that stores them in memory, compressed using GZIP algorithm.
However, compression has proven to be much too slow for our purposes, it is a good
illustration how one can change the implementation of one component without affecting
others.

OutputBuffer — encapsulates propagation algorithm. Whenever PrefixStore installs (or
removes) a new route there is a possibility that the route will have to be propagated to
some of the AS’s neighbors. PrefixStore simply notifies OutputBuffer about the changes
made and flushes the changes after all the data from a BGP update has been processed.
OutputBuffer processes the received information, makes decisions to which neighbors
to propagate it (according to the policies), aggregates prefixes and withdrawals in BGP
messages, and sends them to the neighbors (without actually knowing where they are).

FlapStore and MRAIStore — two stores maintaining information about the timers. We
described MRAI timers and Route flap damping technique above. MRAI suppresses
sending of a message to a neighbor if not enough time has elapsed since the last an-
nouncement was sent, and Route flap damping suppresses a route if it is considered to
be flapping. FlapStore and MRAIStore maintain information about such suppressed
objects. Their responsibility is to make sure that appropriate actions will be taken as
soon as the suppression time expires.

4.6.5. Execution Flow

In order to show what the execution flow looks like we have to make a distinction between
(i) communication flow and (ii) AS flow. The first one deals with what happens between
sending of a BGP message by one AS and receiving of this message by another AS, while the
latter deals with how a BGP update is processed by the destination AS.

Communication Flow

In order to send a message to another AS, the sender has to use the communication capabilities
of its compute node. The flow is as follows:

e A prepared BGP message is added to the sending queue, where it is serialized into bytes
and written to the buffer.

e At this moment the sending AS considers the message to be delivered.

28

e The compute node tries to send the buffer contents to the receiving compute node using
asynchronous 1/0.

e The receiving compute node deserializes the message, finds the recipient AS, adds the
message to its incoming queue, and notifies it that there is a new message to process.
Execution Flow
Each AS performs the following task in an infinite loop:
e Wait for an object in the incoming queue.
e If the object is an incoming BGP Update:

— Iteratively add information about each received prefix and withdrawal to the Pre-
fixStore.

— The PrefixStore updates FIB and RIB (according to the policies) and eventually
flushes the OutputBuffer.

— OutputBuffer decides which messages should be sent to which neighbors (enforcing
the policies) and which to deffer (because of the MRAT timer).

e If the object is information about an expired MRAI timer:
— Send deferred messages to the appropriate neighbor.
e If the object is information about an expired Route flap damping penalty:

— Mark the appropriate route as eligible and run the decision process. Eventually
propagate the new route to the neighbors.

e If the object is a message sent from the coordinator to the compute node:

— Execute the message.

4.7. Summary

The design and implementation of the simulator is driven by requirements such as scalability,
extendibility and efficiency. We have decided to implement the model as a parallel application
running on a homogeneous cluster. Java was used a programming language, because of
its object-oriented approach, good specification-implementation separation, direct mapping
from process-oriented simulation and portability. The KISS principle was applied to keep
implementation as simple as possible.

A validation experiment will be conducted to show to what extent the simulator reflects
the BGP behavior and indicate which parts of the protocol need more detailed modeling.

29

Chapter 5

Validation Description

In previous chapter we have presented the design and implementation of the BGP model
capable of simulating BGP on a Internet-size scale. In order to make it a useful tool to draw
conclusions about BGP’s behavior, it needs to be calibrated and it has to be shown that it
is in fact a valid BGP simulator. That means we need to show to what extent the results
obtained from the experiments conducted using our simulator resemble real BGP behavior.

5.1. Model Validation

During the model design phase a number of decisions affecting the accuracy of the simulator
have been made. An AS internal network is not modeled but treated as a single router,
parts of the protocol like keep-alive messages or connection creation are not included in the
model, and network link problems (i.e., transmission delay and link congestion) are not taken
into account. We argued that the overall impact of these factors on the protocol’s dynamic
behavior is negligible. In order to show that our assumptions are indeed correct, we need
to show that the designed model of BGP protocol is correct with respect to some particular
characteristics.

Besides abstracting the protocol we have also used a less strict simulation execution
method. The simulator is not event-driven because it would make it not scalable. We have
opted for emulation instead, knowing that the resulting simulator will not be as accurate as
available event-drive simulators. This is due to the high non-determinism level in the simu-
lator execution introduced by the quasi-real-time execution model and it cannot be a priori
stated how much inaccuracy in our simulator is inducted by the fact that it is run in parallel
without strict event ordering.

We will demonstrate that, although we have abstracted or omitted parts of the protocol
and used a non-standard approach to the BGP simulation problem, the designed model in
fact reflects some interesting BGP characteristics.

5.2. Validation Techniques

One of the classical papers in the validation field is the one written by Naylor and Finger [20]
which describes recipies for model validation. One of the proposed ways is to compare the
model input-output transformations to corresponding input-output transformations of the real
system. This can be done only when the input-output transformations for the real system
is available, which in fact is rarely the case (if it was possible do arbitrary input-output
transformations using the real model there would be no need to build the simulator). If there
is absolutely no possibility of studying input-output transformations of the real system to test

31

how representative the simulations output is, one has to resort to analytical studies of the
model and expert reviews of output data.

Even though BGP behavior has been studied and analyzed extensively, a deeper under-
standing of BGP phenomenas is still missing in the community. Many of anomalies have been
named but it is not clear what is in fact causing them. This makes it hard to use experts
reviews to validate the output of the simulator as the expected output is not known.

There is also no possibility of running arbitrary input-output transformations on the real
BGP network—it is a very big, heterogeneous network of great importance to the Internet
and the world’s economy. It is therefore not possible to perform experiments that would affect
the overall BGP performance. Because of that we concentrate on BGP experiments that can
be conducted on the real network without affecting its overall performance and do not require
too many entities to participate.

5.3. Experiment Framework

Our BGP model was not intended to be a full BGP simulator, reflecting every aspect of
the protocol and network behavior. Our interest was limited to studying BGP dynamic
behavior, not looking at a particular router state but rather at the globally visible protocol
characteristics.

By means of validation we want to show with respect to which properties our simulator is
accurate and to what extent. Such knowledge could be later used to observe how exactly those
properties affect the simulation output and allow to get a much deeper protocol understanding.

Possible BGP characteristics that can be studied using our simulator include properties
such as:

e Convergence time with respect to various parameter settings and techniques used (e.g.,
MRALI timers, route flap damping).

e Impact of new techniques (such as studied in [22] and in |7]) on the amount of messages
exchanged between peers, convergence time, connectivity, etc.

e Impact of properties such as average AS path length, AS network size (with respect to
the amount of peers as well as to interconnectivity level) on BGP dynamic behavior.

5.4. Validation Approach

Because BGP is such an important factor of today’s Internet it has been monitored for many
years now. CAIDA [5] studies network topologies at many levels, the RIPE RIS project [29]
and University of Oregon’s Route Views [30] have been monitoring BGP updates exchanged
between peers. Many people have analyzed this data and tried to draw conclusions about the
BGP behavior (e.g., [3] and [18]). Our approach is to try to run such an analysis of BGP on
our simulator and see to what extent the results from the conducted studies match with the
results from the simulation. In order to do so, a study has to be chosen that is reproducible
and can be run outside the real BGP network environment—if the cause of the observed
behavior is known it can be introduced into the simulator and the resulting behavior can be
observed.

The main goal of rerunning such an analysis is to show which observed BGP properties
hold and to what extent. It is also very important to see which properties do not hold—
such information could be used to improve the simulator in the future—we could for example
conclude that we have abstracted some parts of the protocol too much and would have to
reconsider decisions we made. Using validation one can measure how well and how accurately
we captured the dynamics of the protocol in the model.

32

5.5. Experiment Description

We have decided to use “BGP Beacons” study by Mao et al. [18]. They analyzed BGP beacons
behavior using Route Views monitors. Although they studied issues such as, interarrival times,
and different BGP implementations, we will only concentrate on convergence time study.

The study concentrates on observing special BGP prefixes—so called BGP beacons. Bea-
cons are announced and withdrawn at known times and treated as signals going through the
network. Because of the limited access to BGP routers, Route Views monitors have been used
to study the signal duration and relative convergence times. The purpose of the study was
to get a better understanding of how information is propagated inside the real-world BGP
network.

The main goal of the validation experiment is to compare the distribution of the BGP
beacons signal duration observed in the real BGP network with results from the simulator.
By analyzing the results it will be possible to say whether the convergence characteristics of
the simulator are correct, increasing the confidence in the correct design of the model.

5.5.1. BGP Beacon

To study BGP dynamics, cause and consequence relations are needed. Although a lot of data
from BGP monitors is available, it is hard to reproduce the observed behavior. This is due
to the fact that what monitors observe is a result of unforeseen events happening somewhere
in the network. It is hard to infer what was the root cause of an observed event. Instead
of recomputing the root causes using the observed behavior, people have decided to tackle
the problem from the opposite direction: introduce a known event at a known time into the
network and observe the behavior caused by it. This means that instead of inferring the cause
of an event by studying its consequences, one can study consequences of the known cause.

A BGP beacon is a special network prefix. Its main task is not to maintain connectivity
to the network it describes but to give the possiblity to monitor the BGP updates caused
by announcements and withdrawals. Such prefix is periodically announced and withdrawn at
known times. When the time of the prefix announcement is known, it is possible to measure its
convergence time using available BGP monitors. Because the time between consecutive events
(i.e., announcements and withdrawals) is relatively small—2 hours—there are enough samples
available to draw conclusions about beacon prefixes convergence time for both announcements
and for withdrawals.

5.5.2. Route Views

The University of Oregon’s Route Views project was originally conceived as a tool for Internet
operators to obtain real-time information about the global routing system from the perspec-
tive of several different backbones and locations around the Internet [30|. Route Views are
monitors that collect data from different sources by peering with them. Routes received from
peering sessions are never passed on or used to forward packets and Route Views servers do
not advertise any prefixes themselves.

Because Route Views only receive BGP updates and never send any, effectively they
can be seen as “black holes” or “sinks” to which many BGP routers send announcements and
withdrawals (just as to normal neighbors) but with the only task to store them. Consequently,
there should not be any AS path containing a Route Views AS number as transit AS.

All the updates received by Route Views are published online, allowing researchers to
analyze them and study various aspects of the BGP behavior. In particular, Route Views
can be used to study BGP beacons convergence time—the time elapsed between the beacon
advertisement /withdrawal and the time the beacon is seen by Route Views servers.

33

5.5.3. Signal Duration and Relative Convergence Time

Mao et al. [18] studied BGP beacons convergence time by means of two different metrics,
namely (i) relative convergence time, and (ii) signal duration time. We will study both
parameters using the simulator and compare the results with the ones from the real BGP
network to measure to what extent convergence time distribution is preserved.

Signal Duration

Mao et al. used the concept of input signal to describe both announcements and withdrawals
of the BGP beacons (at their originating hosts). The BGP network was treated as a giant
nondeterministic signal transducer where each input signal causes output signals that can be
observed at many locations. The term output signal was used to describe incoming updates,
which were a consequence of the input signal, as observed by one host. A sample output
signal (from host AS2) could for example be:

Time Type AS Path
3 A AS2 AS3 AS4 AS5
7 A AS2 AS3 AS6 AS5
10 A AS2 AS3 ASH

In this situation, the first update (as seen from Route Views server peering which peers
with AS2) of the output signal came in at time 3 and the last one came in at time 10. We
define the signal duration as the time elapsed between the first and the last update in the
output signal from the Route Views servers perspective. In this case the signal duration time
is 7. If there is only one update in the output signal the signal duration is 0.

The signal duration can be seen as the time it takes for the input signal to converge to a
stable state for the observed AS.

Relative Convergence Time

Normally one Route Views server peers with more than one AS. Signal duration is computed
independently for each peer but apart from that, Mao et al. define also relative convergence
time. Assume a Route Views server receives output signals from two different peers (for the
same input signal)—AS2 and AS10:

From AS2: From AS10:
Time Type AS Path Time Type AS Path
3 A AS2 AS3 AS4 AS5 8 A AS10 AS13 AS27 AS5
7 A AS2 AS3 AS6 AS5 13 A AS10 AS13 AS25 AS5
10 A AS2 AS3 AS5H 23 A AS10 AS13 AS5

Signal duration for AS2 is 7 and for AS10 15. Relative convergence time for a peer X is
the time between the first update in the output signal from any peer and the last update in
the output signal from peer X. So the relative convergence time for AS2 is 7 (10 — 3) whereas
for AS10 it is 20 (23 — 3).

Figure 5.5.3 illustrates the difference between normal convergence time, relative conver-
gence time and signal duration.

34

AS2 AS2 AS10 AS2 AS10 AS10

v v 3

3 7 8 10 13 23 Time

signal duration and relative
convergence time for AS1

signal duration time for AS10

v

relative convergence time for AS10

Figure 5.1: Mlustration of difference between signal duration, relative convergence and con-
vergence time.

5.6. Experiment Setup

In [18] the authors analyzed BGP beacons signal duration time and relative convergence
time of three BGP beacons announced and withdrawn from three different ASes. For every
beacon both the announcement and the withdrawal times were analyzed. We will rerun the
experiments in the simulator trying to recreate an environment similar to those in which the
original experiment was conducted.

5.6.1. Runtime Environment

The BGP Simulator is intended to run on a homogeneous cluster. To perform the experiment
the Distributed ASCI Supercomputer 3 (DAS3) at Vrije Universiteit Amsterdam was used.
This cluster consists of 85 dual-processor dual-core nodes (4 CPU cores per compute node).
The validation experiment was executed using 65 nodes—64 compute nodes and 1 coordinator
node.

To rerun the experiments we need a network, similar to the on which the reference mea-
surements were made. CAIDA network of AS relationships is used. Unfortunately the original
analysis was conducted in 2002-2003 and the oldest available CAIDA network is from January
2004. This network may be considerably bigger (especially with respect to AS’s interconnec-
tion) than the original one.

The network for January 2004 obtained from CAIDA consists of 16301 ASes. They are
distributed randomly between compute nodes, which gives 254 or 255 ASes hosted on each
one of them.

5.6.2. Simulation Parameters

The result of each experiment is in fact the combined impact of many affecting factors. Model
design, its abstraction level, simulator implementation and language runtime environment
(namely JVM) all affect the results obtained by the simulation. Apart from such “hard”
factors, there are also many simulation parameters which can be treated as the input of the
simulator and have impact on its output. One can distinguish BGP model specific parameters
like MRAT timers settings or route flap damping thresholds, and environmental parameters
like noise level in the network. Each one of them has its impact and each one of them has
to be carefully studied and set in a way that is most compliant with the real-world state at
the time of the original experiment. All these parameters define a specific instantiation of the
model and with the simulator a specific experiment instance.

35

Route flap damping At the time of the original BGP Beacons experiment (2003), route
flap damping was already considered harmful [4] however convergence time distribution
graphs indicate that it was still widely used. In order to recreate the original environment
route flap damping has to be present in our simulations.

There is a difference in standard route flap damping settings used by Juniper and Cisco
routers, which affects the amount of flaps necessary to suppress a route. We do not
have extensive information about the router type distribution and leave the setting of
how many percent of routers is Cisco-like as one of the input settings. The distribution
of router types among ASes is random.

MRAI MRATI describes the minimal time between consecutive route announcements sent by
one peer. In the simulator this timer is implemented on a per-peer rather than on a per-
peer-per-prefix basis, just as it is done by router vendors (to our best knowledge). Just
like for route flap damping there is a difference between MRAI default values for Cisco
and Juniper routers—Cisco uses 30 seconds as default setting, while Juniper routers by
default do not suppress advertisements before sending. Again the percentage of routers
having 30 seconds timers is left as input setting while distribution among routers is
random.

Policies Policies are the way how decisions are made in the BGP network. Unfortunately
when using only BGP monitors like RIS or Route Views it is hard to infer the exact
policies used by the peers. The easiest possible policy is to always prefer the shortest
path, no matter where it came from. This is obviously not the case in the Internet.
The policies used in the simulator make decisions based on AS path lengths, type of
relation between the sender of the route and the receiver, and some random factor (to
avoid ties). Definitely policy decision making in the simulator requires more study in
order to reflect real-world situations better.

Network noise level Although BGP is an incremental protocol and updates should be sent
only when a new event occurs in the network, due to the protocol nature and network
size, there is a considerable amount of constantly exchanged updates. From the per-
spective of other updates, constant exchange of information can be treated as “network
noise” and may have serious impact on how long it takes for new updates to propagate
to a stable state. One of the reason is that “noise” triggers the MRAI timers and makes
other announcements wait until the MRAI timer expires.

Although updates exchanged between BGP peers in the real networks can be observed
by RIPE RIS or Route Views monitors, it is not an easy task to generate events creating
a comparable level of noise. The simulator generates noise using very a simple solution:
random ASes in the network propagate bogus prefixes every X seconds. Convergence
time of these prefixes is not measured—their only purpose is to create noise and make the
runtime environment reflect the reality more accurately. The time between consecutive
bogus prefix announcements is also an input parameter.

Time scaling As we have stated before the simulation is not being run in real-time but in
scaled time. The scaling factor tells how much faster (or slower) the simulation time
goes with respect to real time.

It is possible the run the experiment without scaling the time but the resulting simu-
lations would take very long and because of the low load, the cluster usage would not
be effective. Therefore the time is scaled such that the experiment can be run much
more faster but without having significant impact on the output. Therefore it is very
important to find a good balance between good compute node load and the time it takes

36

to run an experiment. Effectively, time scaling makes the simulator perform exactly the
same operations, only faster.

The simulator is software executed on physical machines using physical network for
the communication. Both the Java Garbage Collection mechanism as well as access
to hardware devices can generate delays in the order of up to few milliseconds. If
the time scaling factor would be too big—for example in the order of hundreds—tens
milliseconds would expand to a few seconds. Few seconds difference in processing time
by single router is not a negligible difference. Because the nodes overloading could
have very bad impact on the simulation results there are many performance counters in
the simulator, which monitor if the processing delays are inside an acceptable interval.
Time scaling factor has to be chosen in such a way that the overloading never occurs.
Experiments have shown that depending on the noise level, reasonable scaling factor is
between 15 and 50.

The described model parameters have considerable impact on the results obtained by
the simulation. Because of the lack of extensive study of these parameters in real life, simple
approximations have been used (like random MRAT and route flap damping types distribution
among peers), accepting the fact that it makes the results less accurate. The task of better
inferring real values and their distribution is left for future research.

5.6.3. External factors

One of the biggest and most important factors affecting accuracy of the simulation is the AS
topology. It is important to understand how the network graph can influence obtained results.

Some accuracy is lost already by treating each AS as one router and by ignoring intra-AS
connections. This is a deliberate modeling decision made to scale the size of the problem
down.

As we have written before we use the network data from CAIDA [5]. Network inferred
using algorithms like the one used by CAIDA can miss up to 90% of peering connections [8].
It is not clear to us to what extent lack of peering connections can influence the convergence
property of the BGP protocol. Therefore it cannot be assumed that the network used for the
experiments is complete and that it truly describes the real BGP network.

Besides the incompleteness of the network, there is another important factor affecting the
experiment results: the reference analysis was done at the end of 2002 and at the beginning
of 2003 but the first network available at CAIDA is from January 2004. We cannot a priori
state to what extent network from January 2004 differs from the network from January 2003.
It might be possible to prune some AS connections using different data available at CAIDA
to obtain an AS topology more similar to the one from 2003.

We have to be very careful when trying to draw conclusions from the obtained results,
because the data used for out simulation is different from the original and we cannot tell to
what extent.

5.6.4. Time Measurement

In order to compute the signal duration and relative convergence, the simulator has to be
capable of measuring time. All ASes, the compute node itself and the coordinator have access
to current simulation (scaled) time. Ounly the scaled time is used during simulation, not the
real-world time.

At the beginning of the simulation each compute node is notified which moment in time
is treated as simulation time 0. This is necessary to be sure that the time of the events that
occurred on different compute nodes are comparable.

37

In the reference study the authors did not have access to each router and therefore had
to use Route Views to monitor outgoing updates. Although we have direct access to each
AS, in the simulator results are collected using Route Views monitors just like they were in
the real network. The Route Views monitor is implemented as a BGP router but with a
different PrefixStore—instead of real BGP implementation it only saves information about
when particular prefix was received.

After the experiment is finished all data from the two Route Views monitors is sent back
to the coordinator node. The coordinator processes the data and computes signal duration
time and relative convergence time for each prefix on every monitor. Information about bogus
prefixes (noise) is not sent back to the coordinator.

5.6.5. Single Experiment Description

We call one run of the whole simulator on a cluster a single experiment. The input of the
experiment is the network topology, parameters (e.g., MRAI, time scale). The output is signal
duration and relative convergence time data.

After all nodes have been set up and all initial settings have been made, we start introduc-
ing beacon prefixes into the network. Fach beacon prefix is given enough time to propagate
to a state were its interference with other beacons is minimal. Unlike with normal beacons
we are not restricted to a few beacon prefixes and therefore for each probe (prefix announce-
ment /withdrawal) we use different prefixes—it makes it easier to monitor the events, as we
do not have to use sophisticated techniques to distinguish different input signals for the same
beacon.

To monitor withdrawals we have to first propagate prefixes as fast as possible—without
taking care of possible interactions. Afterwards we reset their timers (so that we can register
the time we first see an update in the withdrawal’s output stream) and start withdrawing
them one by one.

Just as in the referenced work, we measure signal duration and relative convergence time
using data for exactly the same prefixes.

An experiment consists of measurements of 100 introduced and 100 withdrawn prefixes.

5.6.6. Experiment Instance Description

One execution of the simulator, performing an experiment is called an experiment instance.
Instance input consists of (i) AS network, (ii) list of events that should be executed by the
coordinator, and (iii) model and simulation properties. The output of the simulator depends
on the type of the performed experiment—data that needs to be recorded is different for
average AS path length measurement than for signal duration time. The simulator output for
reruns of the “BGP Beacons” experiment is a list of times at which Route Views monitor has
received BGP updates from its neighbors.

AS Network

At the start of the simulation, every compute node reads the AS network graph from a file on
the hard drive. The file consists of a list of ASes as well as links between them. Each link has
an annotation that says whether it describes a customer-provider or a peer-peer relation as
well as its direction. The coordinator does not have to read the whole graph—its only interest
is the distribution of ASes between compute nodes, not connections between them.

38

Events List

The events that have to be introduced into the network are stored in a separate file. This
file is read only by the coordinator, the entity responsible for introducing new events into
the network. An event is an arbitrary object that will be executed by the coordinator at a
scheduled time. There are various types of events:

AnnounceEvent This event describes which AS should start announcing (or withdrawing)
a list of given prefixes at a given time. The coordinator delivers this information to the
appropriate AS and this AS starts sending information about the prefix to its neighbors.
Effectively, AnnounceEvent is a way to introduce events into the AS network.

NoiseEvent An event describing that the coordinator should start introducing noise into
the system (by triggering bogus prefix announcements).

LastSeenEvent Processing this event results in a request to the Route Views monitors to
send back information about arrival times of updates for prefixes described in the event.
When the information is received it is stored on the hard drive. Effectively this event
saves the output of the simulator in disk files.

ResetDataEvent Executing this event results in resetting data stored by Route Views mon-
itors. This is necessary for withdrawals’ signal duration and convergence time measure-
ment (after the announcement converges to steady state, before the withdrawal input
signal is introduced).

Events executed by the coordinator describe one full simulation scenario and determine the
whole experiment. At the programming level an event is a simple Java object implementing
the Event interface. For different types of experiments different types of events may be
necessary—they can be easily created by providing different implementations of the Event
interface.

Properties

Many model as well as simulation settings are externalized from the code. This means they
are not part of the simulator’s source code but rather are its input. Such parameters include
for example MRALI timers (model) or noise level (simulation) settings. Changing the property
value can have dramatic impact on the simulation results (as will be shown in the next
chapter). Important properties that create a model instance are as follows (the meaning of
the parameters is described in 5.6.2):

timeScaler Describes how much faster the simulation time should go with respect to the real
time. A timeScaler value n means that with every second the simulation time advances
by n seconds.

mraiProc Says how many percent of the ASes should have MRAI timers. Setting this value
to 70 means that 70% of ASes will have a MRAI timer with 30 seconds threshold (hosts
are picked on random basis).

flapPercentage Says how many percent of the ASes should have the route flap damping
technique turned on.

flapDistribution Says how many percent of the ASes, that have route flap damping tech-
nique turned on, should have Cisco-like behavior. The rest of the ASes will have Juniper-
like behavior.

39

iBGPmaxValue and iBGPMaxNeighbors Those parameters describe the values to be
used when computing the delay caused by iBGP.

noiseSleepTime Describes the time (in milliseconds) between consecutive bogus prefixes
announcements.

Each experiment instance input consists of an AS network topology, an event list and
properties settings. Based on this input the simulator generates the output (experiment
results).

Output

The simulation output of the “BGP Beacons” experiment is stored in a file of the following
structure:

monitorName; peerASId; prefix; firstSeen; lastSeen; totalSeenTimes

Each line says that prefix “prefix” from “peerASId” was first time seen at time “firstSeen”
and last time seen at time “lastSeen” by monitor “monitorName”. Between “firstSeen” and
“lastSeen”, “prefix” was seen “totalSeenTimes” times. Such data is sufficient to study the
distribution of both signal duration and relative convergence times.

Output generation is not included in simulator’s core source code but is a result of process-

ing of one of the events—LastSeenEvent for “BGP Beacons” experiment—by the coordinator.

5.7. Summary

In order to show validity of the simulations, a validation experiment was performed. Mao
et al. [18] was used as reference experiment and the simulator setup and configuration was
described.

In the next chapter the results of the simulation will be compared with results obtained
from real-world beacons observation. Similarities will be shown and some explanations will
be given for the spotted discrepancies.

40

Chapter 6

Results Discussion

Many experiments were performed using the setup and different possible parameter values
presented in the last chapter. In this chapter, results of the calibration will be presented and
compared with the anticipated outcome. Impact of the input parameters on obtained results
will be studied and one example of possible “what-if” analysis will be presented.

6.1. Experimental Setup

6.1.1. Graphical Data Representation

Mao et al. [18] used Cumulative Distribution Function (CDF) graphs to present the results of
their analysis. The vast majority of observed signal duration and relative convergence time
values fall into a 0-180 seconds interval and the authors have therefore decided to plot CDF
only for values falling into this interval. In order to be consistent with their representation, we
will present the simulation results using CDF as well, showing only the 0-180 seconds interval.

Besides cumulative distribution graphs, signal duration time histograms will be presented.
Reason for this is that there is a significant discrepancy in the results presented by Mao et
al. using histograms and CDF in their “BGP Beacons” paper. Their histograms match our
results and expectations, unlike their CDF graphs.

6.1.2. Beacons

In the reference experiment three BGP beacons were studied.

e Beacon 1: 198.133.206.0/24 maintained by Randy Bush, introduced by AS3927, having
AS2914 and AS1239 as Tier-1 upstreams

e Beacon 2: 192.135.183.0/24 maintained by David Meyer, introduced by AS5637, having
AS3701 and AS2914 as Tier-1 upstreams

e Beacon 3: 203.10.63.0/24 maintained by Geoff Huston, introduced by AS1221, having
AS1221 as Tier-1 upstream!'

It is very important to note that the connectivity of Beacon 1’s host was changing during
and after the experiment was conducted. Additionally, because the simplified network used in
our experiment is about one year younger than the one used in original experiment, Beacon 1
has different connectivity and results for this beacon may vary strongly from the one observed
in 2002-2003. Nevertheless, we are much more interested in trends than in exact values and
studying Beacon 1’s behavior can still be very useful.

! AS1221—Telstra Internet, is Tier-1 provider itself

41

6.2. Obtained Results

6.2.1. Simulated Behavior

Bzacons 1.2.3 ai Aoute YWiews Beacons 1,2,3 in the Simulator
100 1 }j 3 PR x
E . ; . 4 T ! 4 4 f** X
an S sy el 4.#,‘ b e o e 0.9 }’e@’”* §F
= L S e ’m':f R ditn ki 08
H F 2 f i @ y
2 70 g oo § 07
5 g #,j— oo
) SR . S SR e SRR, CREEAN 18 5 06 ,ﬁm Fial
; B e T T b é 05
.1 - : : il : : : : 2
= i v - " & . o . .- . ST S 30 o 04
% i . 2 E ~ wk
= + Beaconi ANN || E o
£ o Heaconl WD A
(& + BeaconZ ANN
L) 5 Beacon2WD |7 02
Beacon3 ANN
] Heacand WD [7] 0.1
a 20 40 60 a0 100 120 140 160 18O 0
2 2 0 30 60 90 120 150 180
5 | dura onds
e rateninses Signal duration time in seconds
(a) (b)

Figure 6.1: Cumulative distribution of the signal duration for all three beacons from the
reference study [18] (a) and from the simulator (b). XXX

Beacors 1.2.3 ai Rouk Views

100 Beacons 1,2,3 in the Simulator
1 3 3
£ i
*
a0 v § i
X £ 3
, 300 L
£ 08 F ,f
Z 7ol a 7 Fi
= S o7 £
] H 5&'
& a0l 1 $;
o o 06 F ¥
c 2 [I IR
B B0t gL & H H f AS3927 +
= 8 05 ¥ AS5637 ;—
E i R Szl x|
g Ao Y £ ot
£ g o4 ;
S wof + Beaconl ANM | | g : #}r
E o Beaconl WD E o3 I
© oot + Beacon2 ANM | | 3 o
& Beacon2 WD 02 “j*
Beacond ANN - g
0 Beacond WD | ol
! = a . . h . i i [%
o 20 40 =] a0 100 120 140 160 180 0
Relafive convergence delay in seconds 0 30 60 90 120 150 180
Relative convergence delay in seconds
(a) (b)

Figure 6.2: Cumulative distribution of the relative convergence time for all three beacons
from the reference study [18] (a) and from the simulator (b).

Figures 6.1a and 6.2a present results obtained by Mao et al. [18]. We want to concentrate
on the announcement distribution, especially on signal duration time. One interesting thing
are repeated sudden “jumps” every 30 seconds. Those jumps are normally attributed to MRAT
timers—time between first and last update received from the same peer is often a multiple
of 30 seconds. What is also very distinctive and intriguing is the very small percentage of
signals with 0 seconds duration.

Figures 6.1b and 6.2b present our simulator’s output for announcements for all three bea-
cons. Although the curves shape is very similar, one significant difference can be observed—
the percentage of signals with 0 seconds duration from the simulators results is much bigger

42

(between 30% and 60%) than the one observed in the reference experiment (less than 10%).
In both cases large percentage of values is a multiple of 30 seconds—this is the influence of
MRALI timers.

6.2.2. Parameters Sensitivity

As described in Section 5.6.2 each model instance is made out of input parameters such as
MRALI timers percentage, route flap damping settings and so on. Those parameters influence
the simulator’s output and it is interesting to study to what extent the simulator’s output
changes for different input settings.

MRAI

The percentage of routers with MRAI timers bigger than 0 influences the simulator output in
two ways:

Shorter signal duration times The less routers have MRAIT timers set, the less updates
are suppressed for 30 seconds and signal duration time decreases.

30 seconds intervals The percentage of routers having MRAI timers set changes the per-
centage of signals with duration that is a multiple of 30 seconds. The more MRAI timers,
the bigger the “jumps” observed on the graphs. In fact, if every router has MRAT timer
set almost every signal duration time is a multiple of 30 seconds, and the CDF graph is
no longer continuous—consists of points every plotted every 30 seconds.

Noise Level

Constant update exchange between peers influence the MRAT impact. When a bogus prefix
is propagated to a neighbor, the MRAIT timer suppresses the next updates to the same peer
for 30 seconds. It is therefore possible that the first update, that should be propagated to
Route Views monitor, gets suppressed and before the timer expires a new, better update is
received. The first update does not get propagated and Route Views monitor receives only
one update for a given beacon. Signal length decreases from 1 to 0 and signal duration from
30 seconds to 0 seconds.

In the observed results most updates have a signal length of either 1 or 2, and a higher
noise level significantly increases the percentage of signals with duration time 0.

Route Flap Damping

Route flap damping is considered to be responsible for extremely long signals duration time [18].
This is a result of suppressing a route when it is falsely considered to be flapping. Route Flap
Damping technique was given as main reason for the presence of not negligible percentage
of signals that have a duration time longer than 180 seconds in [18] (as can be observed on
Figure 6.1a).

Route flap damping is implemented in our model and the percentage of routers using this
technique is one of the simulation parameters. Although many routes get damped, we did not
observe a significant influence of route flap damping on the signal duration. This is caused by
the fact that it is very rare (in the simulator) that the route that gets undamped is propagated
globally. In most cases, the neighboring routers do not consider the newly received undamped
route to be better than the currently installed one.

43

iBGP Convergence Time

Normally an AS consists of more than one router. iBGP is used to exchange routing infor-
mation between routers being in control of the same AS. The proposed BGP model treats
each AS as a single router, without taking its internal network into account. Because the size
of the AS network might have an impact on the iBGP convergence time, the parameter was
externalized and is treated as simulator input.

iBGP convergence time has significant impact on the signal duration time and this im-
pact depends on the beacon: large ASes (with more than 700 neighbors) have longer iBGP
convergence time and if they are often on the best AS path, such paths are may not be found
fast enough. Longer paths, but traversing only smaller ASes can be found faster and more
updates have to be generated before the network converges to the final state. Depending on
the path explored different prefixes can “suffer” longer or smaller delay in founding the best
AS path.

iBGP convergence time seems to play an important role in the simulation results—
although it does not significantly change the CDF curves shapes, it has big impact on the
exact values. It is therefore necessary to study iBGP convergence in the real BGP network
and its impact on the simulator as it might improve the simulator accuracy.

6.2.3. Parameters Used

Many different parameter settings have been tested. They were evaluated both by looking at
simulator behavior and output, as well as by its sanity. Many different configurations generate
reasonable output. The results of the experiments differ, but all show the same characteristics.
The parameters used are:

e 65% of routers having MRAI timers.

e 10 seconds of iBGP convergence time for 1500 neighbors with logarithmic distribution:
iBGPConvergence(asSize) = log(501/10yasSize seconds.

e 65 percent of hosts having route flap damping, 80% of them being Cisco-like.

e Bogus prefix announcement introduced once every 121 seconds (by a random AS).

It has to be stressed, that these parameters are a result of the calibration but it does not
mean that they perfectly reflect the situation in the real BGP network.

For real BGP beacons a two hour pause is used to assure that two consecutive beacon
updates do not interfere with each other. To achieve better result reproducibility, a two hour
pause is used in the simulator as well. In fact, the observed simulator behavior is extremely
stable and the CDF graphs for e.g., 30 and 200 prefixes do not differ significantly. This is
a very important simulator property, as it shows that although the execution order is highly
non-deterministic, it does not have that much impact on the results—it shows that using
emulation instead of discrete-event simulation does not introduce too much noise into the
results.

6.3. Results Comparison
The obtained results exhibit both similarities as well as differences to the ones observed in

the real BGP network. Some of these differences can be attributed to a discrepancy found in
the “BGP Beacons” paper.

44

BEeacan 1: ANN-signal duraficn: Cisco-like peers

15000

Beacon 1: ANN signal duration
(elelicv)

[’ . o —

o 30 aa 50 120 150

250 T T T T T T T

s=cands
Beacon 1: ANN-signal duration: Juniper—like peers

o 30 L] 50 120 150

0 10 20 30 40 50 60 7O 80 90 100 110 120 130 140 150

(a) (b)

Figure 6.3: Beacon 1’s announcement signal duration distribution for Cisco-like and Juniper-
like peers as observed by Mao et al. (a) and as observed by the simulator (b).

6.3.1. “BGP Beacons” Experiment Discrepancy

Careful study of the “BGP Beacons” paper has been done and a discrepancy has been found.
The CDF plot for signal duration time (see Figure 6.1a on page 42) does not match with the
histogram for Beacon 1 (see Figure 6.3a). The histogram was meant to present the difference
between signal duration time distribution between Cisco-like and Juniper-like peers. It shows
a very large percentage of signals with duration time 0, small percentage of signals with
duration time 60, and very small percentage of longer signals. This results clearly contradict
the results presented on Figure 6.1a, where very few signals have a duration time 0 and more
than 10% have a duration time above 60 seconds. In fact the CDF graph generated by the
simulator presented on Figure 6.1b matches the histograms much better.

We do not know the reason why the results presented in the histograms do not match
those presented in the CDF graphs and we do not know which result is actually correct.

6.3.2. Similar and Different Characteristics

The characteristic that clearly matches in the simulator and in the real “BGP Beacons” ob-
servation is the 30 second interval in relative signal duration. This interval is visible both on
histograms and CDF graph in the reference paper, as well as in the simulated results. Fur-
thermore, these “jumps” are visible also when input parameters are changed—they disappear
only when the amount of routers without MRALI timers becomes very low?.

The biggest difference is the percentage of signals with duration time 0. There is a dis-
crepancy in the reference paper with respect to this characteristic and it is therefore unclear
which behavior is the actually observed. There is a need to perform experiment similar to the
one described in [18] to assess the factual state.

Another characteristic that is different in the results of the simulations and in the paper
is the relation between prefixes. In [18] it was Beacon 3 that had the shortest signal duration
time and in simulator results it is Beacon 3 to have the longest signal duration. It has to be
reminded that Beacon 1’s connectivity has been changing during and after the experiment,
and the network used for simulations is in fact a year later. We do not know whether this
difference is implied by wrong BGP modeling, incorrect input parameter settings, external

2The signal duration time converges to 0 then, because consecutive updates come extremely fast.

45

factors like available BGP network, or an error in the reference paper. Once again, redoing
the original analysis of the “BGP Beacons” could give answer to this question and lead to
improvements of the behavior of the simulator.

Although signal duration time characteristics seem to be different (especially with respect
to percentage of signals with duration time 0), relative convergence time distribution (see
Figure 6.2a on page 42 and Figure 6.2b on page 42) are matching. This is surprising as it
implies that ASes in the simulator see the updates arriving for the same time duration. It
is therefore strange that they see updates arriving with the same distribution but generate
different output signal—the observed signal duration is different in the reference paper and in
the simulation. This is yet another premise that in fact the CDF graph (Figure 6.1a on page
42) presented by Mao el al. is erroneous.

6.3.3. Withdrawals Propagation

Beacons 1,2,3 in the Simulator Beacons 1,2,3 in the Simulator

0.9 0.9

08 08

07 07

06 06

+ o
05 05 AS5637 H

04 04

03 03

Cumulative percentage of events
Cumulative percentage of events

0.2 » 0.2
e R

01 5 01 ity
KR * et # "

+ig X
0 30 60 90 120 150 180 0 30 60 90 120 150 180
Signal duration time in seconds Relative convergence delay in seconds

(a) (b)

Figure 6.4: Cumulative distribution of signal duration (a) and relative convergence time (b)
for withdrawal signals for all three beacons as observed by the simulator.

In rerunning the “BGP Beacons” experiment we have concentrated ourselves primarily
on announcements study. The main reason for doing so is that running experiments with
withdrawals requires much more time and finding appropriate input parameters is therefore
more difficult. Nevertheless, withdrawals experiments were conducted as well (see Figure
6.1b on page 42 and Figure 6.2b on page 42). Clearly the results for both signal duration and
relative convergence time do not match those observed by Mao et al. in [18]. The reason for
it is extreme BGP path hunting (as described in [14]) observed during the simulations.

BGP path hunting (aka BGP path exploration) is a well known phenomena. It can occur
both during prefix announcement and withdrawal but is more visible during the latter. When
a node receives a withdrawal it invalidates the route and chooses a different one from the
RIB (each router stores last route received for a given prefix from its peers). The new route
is then propagated to the neighbors, but after some time this route gets invalidated as well;
another route starts to be propagated and so on, until all paths get explored or withdrawn.
In theory path hunting can lead to an extreme amount of BGP updates exchanged (up to n!
in full graph). It has been studied that, in real BGP deployments, scale of the phenomena is
much not that significant—adding on average only 2 or 3 updates to a prefix withdrawal [14]
output signal.

46

Severe path hunting can be observed in the simulator when a withdrawal is being sent.
While normally average AS path length is about 4 to 5, during path hunting the AS path
length can get as long as 30. This is definitely more than observed in real BGP network and
we do not have a definitive answer why path exploration occurs on such a large scale in the
simulated network. There is definitely a need for further analysis of this problem as in fact
path exploration during withdrawals might indicate wrong propagation of announcements as
well.

6.4. What-if Analysis

One of the main reasons for modeling and simulating BGP is “what-if” analysis. Because the
simulator still needs calibration, more validation experiments and its input parameters need
to be researched, results of such analysis may not be creditable. Nevertheless it is interesting
to see how the simulator behaves in a different environment.

To show the idea of “what-if” analysis, the BGP beacons experiment was performed on
a bigger AS network. Besides the network everything is the same: beacons, beacon hosts,
observation points, etc. The only difference is the number of the ASes and their interconnec-
tions. The CAIDA network from January 2008 was used instead of the network from January
2004. The 2004 network contained only about 17,000 ASes where 2008 network contains more
than 24,000 ASes.

Beacons 1,2,3 in the Simulator Beacons 1,2,3 in the Simulator

1 1
— ;
£ i
&
0.9 l" - 0.9
Y f
08 3 F 08
;

07

06

Beaconl ANN —+ ¢
05 Beacon2_ANN B

Beacon2_ANN H
x

04

Cumulative percentage of events
o
o
T

03

Cumulative percentage of events

i
02 02
E

i
0.1 0.1 ¥

0 30 60 90 120 150 180 0 30 60 90 120 150 180
Signal duration time in seconds Relative convergence delay in seconds

(a) (b)

Figure 6.5: Cumulative distribution of signal duration (a) and relative convergence time (b)
for announcement signals for all three beacons for the network from January 2008 as observed
by the simulator.

Figure 6.5a shows signal duration and relative convergence time distribution for all three
beacons announcements. Surprisingly, the average signal duration decreased significantly and
so did relative convergence time. Also the percentage of ASes seeing only one update (signal
length 0) is higher.

One might expect BGP to converge slower in bigger networks but there is another big
difference in BGP networks from 2004 and 2008—its density. It seems that BGP is converging
much better in denser networks and network density is more important than its size. There
is no doubt that this property should be further researched and such research is a perfect
application of our model.

Of course Route Views monitors is not the only way one can study BGP convergence.

47

While in the real network access to BGP routers is highly restricted, during the simulation
it is possible to analyze how the propagation behaves “step by step” and find out how the
decisions are really made. Such close look at BGP can greatly contribute to the understanding
of the protocol’s behavior.

48

Chapter 7

Conclusions

In this thesis we have presented a heavily abstracted BGP model and its implementation—a
large scale BGP simulation. A validation experiment has been presented to show the accuracy
of the model and its implementation. Although the experiment has shown some discrepancies
between observed real-world and simulated behavior, many similarities were found. The
model reflects many BGP characteristics and results obtained with the simulator match with
observed phenomena (e.g., periodicity of signal duration connected to MRAI timers length).

7.1. Impact of This Project

7.1.1. Proof of Concept

One of the most remarkable things shown in this project is a new approach to BGP simu-
lation. In contrast to other BGP simulators, BGP was heavily abstracted and many BGP
parameters were omitted. This allowed to shrink the problem size (with respect to the number
of participating entities) and made computation feasible. Of course, every decision whether
a part of the protocol or the network is essential might introduce accuracy loss. Now when
it is clear that large-scale BGP simulation is feasible, one can go back and re-examine the
decisions made for the model, to improve the simulator’s accuracy.

Another important and new contribution in the field of BGP simulation is using emulation
instead of event-driven simulation. This allows to build a truly scalable and efficient simulator
capable of simulating tens of thousands of ASes with very short single prefix propagation time.
This project shows that BGP can be simulated in a distributed manner and opens doors to
even more distributed simulations: on heterogeneous cluster, spanning many locations with
thousands of cores and terabytes of memory available.

7.1.2. Real-world Resemblance

During the validation experiment many model properties (like MRAI timers, iBGP conver-
gence time settings) have been studied. In most cases the impact of single properties on
simulator’s results was just as anticipated. There are few reasons why we could not show full
similarity of the real-world observations and results of the simulator. The reason are both
practical and model limitations such as: not deeply enough studied model parameters’ real-
world values, different BGP network or too abstracted protocol parts, and lack of consistency
of results presented in the reference work. Nevertheless, the type of distribution observed in
the simulation results is similar to the one observed by Mao et al. in [18]. This proves that
although the simulator still needs a lot of calibration and validation, the overall properties of
BGP dynamic behavior match.

49

7.2. Future Research

7.2.1. Validation and Calibration

Rerunning the “BGP Beacons” experiment has shown discrepancies between experiment re-
sults and those observed in the real-world. There is still need for further simulator calibration
in order to improve the resemblance to a real BGP network behavior. Besides that, the ex-
periment covers only a small part of the BGP protocol and simulator capabilities. Many more
things can be studied, like for instance: total signal duration time, impact of different updates
crawling the network on each other, behavior of the network in the presence of node failures
and so on. Nevertheless, the simulator is capable of running the experiments suggested in
Chapter 1: showing how new (and old) techniques influence BGP dynamic behavior.

The reference “BGP Beacons” experiment was conducted more than five years ago. The
Internet is growing fast and has changed very much during these years. It might be helpful to
conduct a similar BGP beacons study on today’s network and compare that with the results
of the simulator.

7.2.2. Model Properties Study

During the model design, few parts of the BGP protocol or network were left as model
parameters—treated as simulator input. It has been shown in the previous chapter, that
these parameters have very big impact on the observed behavior. They have been modeled
using either very simple random-based distributions or simple mathematic functions. There
is a strong need to research these properties values and distribution in order to provide better
input for the simulator. If the simulator’s input was more creditable its results would also be
more creditable.

Unfortunately, it is hard to infer the exact value of many of these parameters (like for
example routers having MRAI timers and exact values of these timers). Probably many of
them can be inferred by studying Route Views [30] or RIPE RIS |29] monitors data. However,
this will not be a basic task and requires serious research.

7.2.3. Possible Usage

Right now, BGP simulator still requires a lot of investigation in order to be able to give
creditable answers to questions about BGP dynamic behavior. After extensive calibration
effort, model properties study and implementation verification, the simulator can become a
very useful tool for predicting the future BGP behavior with respect to many factors, like
for example: network interconnectivity and size growth, policy changes, protocol changes and
statistical properties on the overall behavior.

The simulator is capable of simulating networks much bigger than today’s Internet, re-
garding both prefix table size and AS network size. It scales very well when more hardware
resources are available.

One specific difference between real-world observation and simulations is the ability to
study the exact behavior of the latter. It is possible to study the behavior of every node
separately, which can lead to a better understanding of the interaction between peers in
BGP. One can “play” with the simulator and see how various settings and implementations
influence the nodes, the protocol and the whole system behavior. To our best knowledge no
other tools exist that can facilitate such large-scale studies.

We think that with this project we made an significant contribution in the BGP research
field. The presented model and its implementation need a lot of improvements but already
shows much resemblance with the real-world behavior. Although the results cannot be treated
as final, they give a direction for future studies which will improve the simulators behavior.

20

We hope that further development will lead to a tool capable of answering serious BGP-related
questions and in the end—to protocol improvement.

ol

Bibliography

[1] Y. Bar-Yam. Dynamics of Complex Systems. Studies in Nonlinearity. Addison-Wesley,
Reading, MA, 1997.

[2] BGP++: A C++ implementation of BGP for ns-2 and GTNetS network simulators.
http://www.ece.gatech.edu/research/labs/MANIACS/BGP++/.

[3] S. Biirkle. BGP convergence analysis. Master’s thesis, Universitit des Saarlandes, June
2003.

[4] R. Bush, T. Griffin, and Z. M. Mao. Route flap damping: Harmful? www.nanog.org/
mtg-0210/ppt/flap.pdf, Oct. 2002.

[5] CAIDA: Cooperative Association for Internet Data Analysis. http://www.caida.org/
home/.

[6] C-BGP: Efficient solver for BGP. http://cbgp.info.ucl.ac.be/.

[7] J. Chandrashekar, Z. Duan, Z.-L. Zhang, and J. Krasky. Limiting path exploration in
BGP. In Proceedings of the 24th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2005), Miami, FL, Mar. 2005.

[8] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun, kc claffy, and
G. Riley. AS relationships: Inference and validation. ACM SIGCOMM Computer Com-
munication Review, 37(1):29-40, Jan. 2007.

[9] X. A. Dimitropoulos and G. F. Riley. Creating realistic BGP models. In Proceedings of
the 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of
Computer Telecommunications Systems (MASCOTS 2003), pages 64-70, Orlando, FL,
Oct. 2003.

[10] N. Feamster, H. Balakrishnan, and J. Rexford. Some foundational problems in interdo-
main routing. In Proceedings of the 8rd Workshop on Hot Topics in Networks (HotNets-
II1), San Diego, CA, Nov. 2004.

[11] T. G. Griffin and B. J. Premore. An experimental analysis of BGP convergence time. In
Proceedings of the 9th International Conference on Network Protocols (ICNP’01), pages
53-61, Riverside, CA, Nov. 2001.

[12] J. Hawkinson and T. Bates. Guidelines for creation, selection, and registration of an
Autonomous System (AS). RFC 1930 (Best Current Practice), Mar. 1996.

[13] G. Huston. Analyzing the Internet’s BGP routing table. Internet Protocol Journal,
4(1):2-15, Mar. 2001.

[14] G. Huston. BGP stability improvements. http://tools.ietf.org/html/
draft-1li-bgp-stability-01, June 2007. (work in progress).

23

[15] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed Internet routing convergence.
IEEE/ACM Transactions on Networking, 9(3):293-306, June 2001.

[16] C. Labovitz, G. R. Malan, and F. Jahanian. Internet routing instability. In Proceedings of
the ACM SIGCOMM 97 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pages 115-126, Cannes, France, Sept. 1997.

[17] C. Labovitz, G. R. Malan, and F. Jahanian. Origins of Internet routing instability. In
INFOCOM, pages 218-226, 1999.

[18] Z. M. Mao, R. Bush, T. G. Griffin, and M. Roughan. BGP beacons. In IMC '03:
Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement, pages 1—
14, New York, NY, USA, 2003. ACM.

[19] Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz. Route flap damping exacerbates
Internet routing convergence. SIGCOMM Comput. Commun. Rev., 32(4):221-233, 2002.

[20] T. Naylor and J. Finger. Verification of computer simulation models. Management
Science, 14(2):92-101, 1967.

[21] The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/.

[22] D. Pei, M. Azuma, D. Massey, and L. Zhang. BGP-RCN: improving BGP convergence
through root cause notification. Comput. Netw. ISDN Syst., 48(2):175-194, 205.

[23] BGP Routing Table Analysis Reports. http://bgp.potaroco.net/.

[24] B. J. Premore. An analysis of convergence properties of the border gateway protocol using
discrete event simulation. PhD thesis, Dartmouth College, Hanover, NH, USA, 2003.

[25] B. Quoitin, L. Tannone, C. de Launois, and O. Bonaventure. Evaluating the benefits of the
locator /identifier separation. In Proceedings of MobiArch (ACM SIGCOMM Workshop),
Kyoto, Japan, August 2007.

[26] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). RFC 4271
(Draft Standard), Jan. 2006.

[27] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang. BGP routing stability fo popular destina-
tions. In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurement,
pages 197-202, Marseille, France, Nov. 2002.

[28] RIPE Routing Working Group Recommendations on Route-flap Damping. http://wuw.
ripe.net/docs/routeflap-damping.html, 2006.

[29] RIPE NCC projects: RIS—Routing Information Service. http://www.ripe.net/ris/.
[30] University of Oregon Route Views Project. http://www.routeviews.org/.

[31] T. Saydam. Process-oriented simulation languages. SIGSIM Simul. Dig., 16(2):8-13,
1985.

[32] Scalable Simulation Framework. http://www.ssfnet.org/homePage.html.
[33] I. van Beijnum. BGP. O’Reilly, Sebastopol, CA, USA, 2002.

[34] GNU Zebra: Free routing software distributed under GNU General Public License. http:
//www.zebra.org/.

o4

